期刊文献+

结合SURF与SVM的高分遥感影像车辆提取技术 被引量:4

SURF and SVM Based Vehicle Information Extraction from High Resolution Remote Sensing Image
下载PDF
导出
摘要 从高分遥感影像中提取车辆信息,对民用和军事领域具有重要意义。为提高车辆信息提取的精度和效率,提出SURF特征和支持向量机(SVM)相结合的方法,对感兴趣区域的车辆进行提取。通过边缘信息消除冗余图像,利用半搜索策略滑动窗口,以提高车辆识别精度,减少计算量。对深圳南山区0.25 m分辨率的遥感影像进行车辆提取测试,测试结果表明:车辆提取的错误率低于20%;车辆提取时间控制在分钟级,本算法具有一定的工程适用性。 Vehicle information extracted from high resolution remote sensing image is of great significance in civil and military fields. To improve the accuracy and efficiency of the vehicle information extraction, the combined SURF(speeded up robust features) and support vector machine(SVM) algorithm is proposed to extract the vehicle information of the interest region. The edge information redundancy eliminating method and semi-search strategy are used to enhance the identification accuracy and reduce the amount of calculation. Vehicle information in the 0.25 m resolution remote sensing image of Nanshan District in Shenzhen is extracted and tested, the results show that the false rate is less than 20% and the extraction time can be controlled in minute level. The applicability of the method is demonstrated.
出处 《湖南工业大学学报》 2014年第2期67-71,共5页 Journal of Hunan University of Technology
基金 中国交通运输部重点基金资助项目(2012-364-208-802-2)
关键词 高分辨率 遥感影像 车辆提取 支持向量机 SURF特征 high resolution remote sensing image vehicle extraction SVM SURF
  • 相关文献

参考文献9

  • 1Ruskone R, Jamet O, Guigues L,et al. Vehicle Detectionon Aerial Images: A Structural Approach[C]//IntemationalConference on Pattern Recognition. Washington : IEEE,1996: 900. 被引量:1
  • 2Zhao Tao, Nevatia R. Car Detection in Low ResolutionAerial Image[C]//Proceedings of 8th IEEE InternationalConference on Computer Vision. Vancouver: IEEE,2001:710-717. 被引量:1
  • 3Hinz S,Schlosser C,Reitberger J. Automatic Car Detectionin High Resolution Urban Scenes Based on an Adaptive 3D-Model[C]//Proceedings of the 2nd GRSS/ISPRS JointWorkshop on Remote Sensing and Data Fusion over UrbanArea. Berlin: [s. n.],2003: 167-171. 被引量:1
  • 4郑宏,李里.基于人工免疫算法的高分辨率航空遥感影像车辆提取[J].国际计算机科学与网络安全期刊,2007(2): 7-12. 被引量:1
  • 5Bay H, Ess A, Tuytelaars T, et al. Speeded-Up RobustFeatures(SURF)[J]. Computer Vision and ImageUnderstanding, 2008,110(3): 346-359. 被引量:1
  • 6Burges C J C. A Tutorial on Support Vector Machines forPattern Recognition[J]. Data Mining and KnowledgeDiscovery, 1998,2(2): 121-167. 被引量:1
  • 7吴迪..基于SVM分类器的分步定位算法研究[D].哈尔滨工业大学,2010:
  • 8Agrawal M, KonoligeK,Bias M R. CenSurE: CenterSurround Extremes for Realtime Feature Detection andMatching[C]//10th European Conference on ComputerVision. Heidelberg: Springer, 2008: 102-115. 被引量:1
  • 9Lehmann A, Leibe B, Van Gool L. Feature-CentricEfficient Subwindow Search[C]//2009 IEEE 12thInternational Conference on Computer Vision. [S. 1.] : IEEE,2009: 940-947. 被引量:1

同被引文献22

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部