期刊文献+

A fluid dynamics route for producing graphene and its analogues 被引量:2

A fluid dynamics route for producing graphene and its analogues
原文传递
导出
摘要 A novel fluid dynamics route for scalable and efficient production of graphene and its analogues is demonstrated.Atomic force microscopy and transmission electron microscopy analyses strongly suggest that the bulk layered materials(graphite,BN,MoS2,and WS2)are efficiently exfoliated into individual layers containing mono-and few-layer nanosheets.Computational fluid dynamics analysis indicates that multiple fluid dynamics events are responsible for efficient exfoliation.Cavitation and pressure release can generate normal force for exfoliation.The velocity gradient-induced viscous shear stress,the turbulence-induced Reynolds shear stress,and shear effects stemmed from turbulence and flow channel-induced collisions can generate lateral force for exfoliation,resulting in theses bulk layered materials self-exfoliation down to single or few layers through their intrinsically lateral self-lubricating ability. A novel fluid dynamics route for scalable and efficient production of graphene and its analogues is demonstrated. Atomic force microscopy and transmission electron microscopy analyses strongly suggest that the bulk layered materials (graphite, BN, MoS2, and WS2) are efficiently exfoliated into individual layers containing mono-and few-layer nanosheets. Computational fluid dynamics analysis indicates that multiple fluid dynamics events are responsible for efficient exfoliation. Cavitation and pressure release can generate normal force for exfoli- ation. The velocity gradient-induced viscous shear stress, the turbulence-induced Reynolds shear stress, and shear effects stemmed from turbulence and flow channel-induced collisions can generate lateral force for exfoliation, resulting in theses bulk layered materials self-exfoliation down to single or few layers through their intrinsically lateral self-lubricating ability.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2014年第16期1794-1799,共6页
基金 supported by the Beijing Natural Science Foundation(2132025) the Special Funds for Co-construction Project of Beijing Municipal Commission of Education the Specialized Research Fund for the Doctoral Program of Higher Education(20131102110016) the Innovation Foundation of BUAA for Ph.D.Graduates the Innovative Practice Foundation of BUAA for Graduates(YCSJ01201309)
关键词 流体动力学 类似物 石墨 生产 透射电子显微镜分析 原子力显微镜 层状材料 剪切应力 Graphene Graphene analogues Fluiddynamics Production
  • 相关文献

参考文献4

二级参考文献51

  • 1Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994, 264:1115-1118. 被引量:1
  • 2Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414:359-367. 被引量:1
  • 3Miller J R, Simon P. Electrochemical capacitors for energy management. Science, 2008, 321:651-652. 被引量:1
  • 4Meng C Z, Liu C H, Chen L Z, et al. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett, 2010, 10 :4025-4031. 被引量:1
  • 5Bae J, Song M K, Park Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage Angew Chem Int Ed, 2011, 50:1683-1687. 被引量:1
  • 6Choi B G, Hong J, Hong W H, et al. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano, 2011, 5:7205-7213. 被引量:1
  • 7Wu Q, Xu Y X, Yao Z Y, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4 :1963-1970. 被引量:1
  • 8Wang K, Zou W J, Quan B G, et al. An all-solid-state flexible micro-supercapacitor on a chip. Adv Energy Mater, 2011, 1 : 1068-1072. 被引量:1
  • 9Dong X Y, Wang L, Wang D, et al. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible elec- trode for supercapacitor. Langmuir, 2011, 28:293-298. 被引量:1
  • 10Liu Q, Nayfeh M H, Yau S T. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J Power Sources, 2010, 195:7480-7483. 被引量:1

共引文献45

同被引文献64

  • 1WATANABE K,TANIGUCHI T,KANDA H. Direct-band gap properties and evidence for ultraviolet lasing of hexagonal boron nitride single erystal[J]. Nature Materials, 2004,3 (6) : 404 - 409. 被引量:1
  • 2LIN Y,CONNELL J W. Advances in 2D boron nitride nanostruc- tures: nanosheets, nanoribbons, nanomeshes, and hybrids with grapheme[J]. Nanoscale,2012,4(22) : 6908-6939. 被引量:1
  • 3BUTLER S Z, HOLLEN S M, CAO L, et al. Progress, challen- ges, and opportunities in two-dimensional materials beyond graph- eme[J]. ACS Nano,2013,7(4) : 2898-2926. 被引量:1
  • 4YU J, QIN L, HAO Y F, et al. Vertically aligned boron nitride nanosheets., chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity[J]. ACS Nano,2010,4(1) : 414-422. 被引量:1
  • 5ZHU Y C,YOSHIO B,XUE D F,et al. New boron nitride whisk- ers showing strong ultraviolet and visible light luminescene[J]. Journal of Physical Chemistry: B,2004,108(20): 6193-6196. 被引量:1
  • 6YANG H F, WITHERS F, GEBREMEDHN E, et al. Dielectric nanosheets made by liquid-phase exfoliation in water and their usein graphene-based electronics[J]. 2D Materials, 2014,1 (1) : 011 -012. 被引量:1
  • 7BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended grapheme[J]. Solid State Communications, 2008,146(9) : 351-355. 被引量:1
  • 8DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride sub- strates for high-quality graphene electronics[J]. Nature Nano- technology,2010,5(10): 722-726. 被引量:1
  • 9BERGIN S D, SUN Z Y, RICKARD D, et al. Multicomponent solubility parameters for single-walled carbon nanotube solvent mixtures[J]. ACS Nano,2009,3(8) : 2340-2350. 被引量:1
  • 10PAKDEL A,BANDO Y,GOLBERG D. Nano boron nitride flat- land[J]. Chemical Society Reviews, 2014,43 (3) : 934- 959. 被引量:1

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部