期刊文献+

空间绳系机器人目标逼近姿态协调控制 被引量:5

Coordinated Attitude Control of Tethered Space Robot During Target Approaching Phase
下载PDF
导出
摘要 针对空间绳系机器人对目标逼近过程中的姿态协调控制问题,设计了一种基于可移动系绳点的姿态协调控制机构,利用系绳实现姿态的协调控制。针对该类型空间绳系机器人,进行动力学建模,并对其动力学特性进行了分析。为了克服利用系绳拉力进行姿态协调控制过程中,拉力波动对姿态控制的影响,采用具有较强鲁棒性的滑模变结构方法设计了姿态协调控制器。可移动系绳点的姿态协调控制机构提供空间绳系机器人两个方向的姿态控制力矩,另一个方向的控制力矩通过空间绳系机器人自身提供,从而实现逼近过程中姿态协调控制。仿真结果表明,通过可移动系绳点的姿态协调控制机构,利用系绳拉力可实现空间绳系机器人目标逼近过程中的姿态控制,并且达到节省姿态控制燃料消耗的目的。 The coordinated attitude control of the Tethered Space Robot (TSR) during target approaching phase is studied here. An attitude coordinated control mechanism with a mobile tether attachment point is designed, and orbit and attitude dynamics models of a TSR with this mechanism are established. Given the dynamics characteristics of mobile attachment point, the sliding mode control method is utilized in the design of the attitude coordinated controller, in which the attitude control mechanism and the thrusters provide three axis control torques together. The simulation result shows that the attitude of the TSR during target approaching phase can be controlled by tether tension via this attitude coordinated control mechanism and the fuel consumption is efficiently reduced.
出处 《宇航学报》 EI CAS CSCD 北大核心 2014年第5期545-553,共9页 Journal of Astronautics
基金 国家自然科学基金(11272256 61005062) 航天飞行动力学技术重点实验室开放基金(2012afdl022)
关键词 空间绳系机器人 可移动系绳点 姿态控制 协调控制 Tethered space robot Mobile tether attachment point Attitude control Coordinated control
  • 相关文献

参考文献20

  • 1Bischof B, Astrium. Roger-robotic geostationary orbit restorer [ C ]. The 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany, 2003. 被引量:1
  • 2徐秀栋,黄攀峰,孟中杰,王东科.基于速度增量的空间绳系机器人中距离逼近过程最优轨迹规划[J].航空学报,2012,33(8):1531-1539. 被引量:8
  • 3Cartmell M P, McKenzie D J. A review of space tether research [J]. Progress in Aerospace Science, 2008, 44:1 -21. 被引量:1
  • 4Rupp C C. A tether tension control law for tethered satellite deployed along local vertical[R]. Marshall Space Flight Center, NASA TM X264963, 1975. 被引量:1
  • 5Williams P. Optimal deployment/retrieval of tethered satellites [J]. Journal of Spacecraft and Rockets, 2008, 45(2) : 324 - 343. 被引量:1
  • 6钟睿,徐世杰.可变绳长绳系卫星系统的一种简单张力控制策略[J].中国空间科学技术,2009,29(6):66-73. 被引量:5
  • 7Beda, Peter B. On requirements for attitude dynamics and stability control for tethered satellite systems [ J ]. JSME International Journal, 2000, 43 (3) : 678 - 683. 被引量:1
  • 8Mori O, Matunaga S. Formation and attitude control for rotational tethered satellite[ J~. Journal of Spacecraft and Rockets, 2007, 44(1): 211 -220. 被引量:1
  • 9Chang I, Park S Y, Choi K. Nonlinear attitude control of a tether-connected multi-satellite in three-dimensional space [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4) : 1950 - 1968. 被引量:1
  • 10Menon C, Bombardelli C. Self-stabilising attitude control for spinning tethered formations [ J ]. Acta Astronautica, 2007, 60 : 828 - 833. 被引量:1

二级参考文献30

  • 1陈刚,万自明,徐敏,陈士橹.遗传算法在航天器轨迹优化中的应用[J].弹道学报,2006,18(1):1-5. 被引量:22
  • 2COLOMBO G, et al. Shuttle-borne "Skyhook": A New Tool for Low-Attitude Research [R]. Smithsonian Astrophysical Observatory, Cambridge, Massa-chusetts Report in Geoastronomy, 1974, (1). 被引量:1
  • 3KUMAR K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems [J]. Journal of Spacecraft and Rockets, 2006, 43 (4): 705-720. 被引量:1
  • 4RUPP C C. A Tether tension control law for tethered satellite deployed along local vertical [R]. Marshall Space Flight Center, NASA TM X-64963, 1975. 被引量:1
  • 5MISRA A K, MODI V J. Dynamic and Control of Tethered Two-Body System: A Brief Review [M]. Space 2000, edited by Napolitano L G , AIAA, New York, 1983: 45-50. 被引量:1
  • 6VADALI S R. Feedback Tether Deployment and Retrieval[J]. Journal of Guidance, Control and Dynamics. 1992, 15: 28-34. 被引量:1
  • 7JIN D P, HUH Y. Optimal Control of a Tethered Subsatellite of Three Degrees of Freedom [J]. Nonlinear Dynamics, 2006, (46): 161-178. 被引量:1
  • 8WILLIAMS P. Optimal Deployment/Retrieval of Tethered Satellites [J]. Journal of Spacecraft and Rockets, 2008, 45 (2): 324-343. 被引量:1
  • 9PRADEEP S. A new tension control law for deployment of tethered satellites [J]. Mechanics Research Communications, 1997, 24 (3): 247-254. 被引量:1
  • 10BATTLETT A C, et al. Math. Control Signals System [M]. 1998, 1: 61-71. 被引量:1

共引文献24

同被引文献68

  • 1曹喜滨,张锦绣,王峰.航天器编队动力学与控制[M].北京:国防工业出版社,2013. 被引量:3
  • 2Liou J C, Johnson N L. effectiveness of active debris A sensitivity study of the removal in LEO [J]3. Acta Astronautica, 2008,64(2 - 3) :236 - 243. 被引量:1
  • 3Jasper L, Schaub L. Input shaped large thrust maneuver with a tethered debris obieet[J]. Acta Astronautiea, 2014 (96)128-137,. 被引量:1
  • 4Aslanov V, Yudintsev V. Dynamics of large space debris removal using tethered space tug[J]. Acta Astronautica,2013(91):149-156. 被引量:1
  • 5Cho S B, McClamroch N H. Attitude control of a tethered spacecraft[C] // The American Control Conference. Denver, Colorado:[-s. n. 1, 2003. 被引量:1
  • 6Queiroz MS De, Kapila V, Yan Q. Adaptive nonlinear control of multiple spacecraft formation flying[J]. Journal of Guidance, Control and Dynamics, 2000,23 (3) : 384 - 390. 被引量:1
  • 7Infeld S, Josselyn S, Murray W, et al. Design and control of libration point spacecraft formations [J]. Journal of Guidance, Control and Dynamics, 2007,30(4):899-909. 被引量:1
  • 8Marchand B G. Spacecraft keeping near the libration points of the Sun-Earth/Moon system[D]. USA: Purdue University, 2004. 被引量:1
  • 9Shahid K, Kumar K D. Multiple spacecraft formation reeonfiguration using solar radiation pressure [J]. Aeta Astronautiea, 2014(103) :269 - 281. 被引量:1
  • 10Bischof B, Kerstein L, Starke J, et al. Roger-robotic geo stationary orbit restorer[J]. Scientific and Technology Se ries, 2005, 109:183 -193. 被引量:1

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部