期刊文献+

基于Hopfield算法的特色旅游路线设计——以大岭山森林公园为例 被引量:8

Design of Special Tourism Route Based on Hopfield Algorithm——A case study of Dalingshan Forest Park
下载PDF
导出
摘要 针对特色旅游路线的选择问题,提出了使用Hopfield神经网络的算法和优化模型,并结合东莞市大岭山森林公园地图,着重考虑公园景点评分、出入口设置、最短路径等因素,构建了Hopfield神经网络模型。依据该神经网络模型算法,设计了休闲保健、户外体验、花季特色旅游路线,并通过与现实旅游路线相比较,证明了基于Hopfield神经网络算法设计的旅游路线是合理可行的。 According to the problem of tourism route design of Dalingshan Forest Park, this article uses Hopfield algorithms and optimization model to build a Hopfield neural nerwork model for Dalingshan Forest Park by considering the scenic spots score, the setup of entrance and exit, and the shortest route of the Park, etc. According to the algorithm of Hopfield neural network,the article designs three special routes including leisure and health tourism route, outdoor experience tourism route, and flower tourism route. By comparing with the actual routes, it is proved that these three routes are reasonable and feasible.
出处 《绿色科技》 2014年第5期254-256,259,共4页 Journal of Green Science and Technology
基金 广东省教育部产学研结合项目(编号:2012B091100111)资助 华南农业大学2011年教育教学改革与研究项目
关键词 特色旅游路线 HOPFIELD神经网络 森林公园 special tourism route Hopfield neural network forest park
  • 相关文献

参考文献6

二级参考文献34

  • 1孙守宇,郑君里.Hopfield网络求解TSP的一种改进算法和理论证明[J].电子学报,1995,23(1):73-78. 被引量:45
  • 2许进,张军英,保铮.基于Hopfield网络的图的着色算法[J].电子学报,1996,24(10):8-13. 被引量:11
  • 3Lawler E L, Lenstra J K, Rinnooy A H G, et al. The Travelling Salesman Problem [M]. Chichester: Wiley, 1985. 被引量:1
  • 4Hopfield J J, Tank D W. 'Neural' computation of decision in optimization problems [J]. Biological Cybernetics,1985, 52: 141--152. 被引量:1
  • 5Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for Boltzman Machines [J]. Cognitive Sci, 1985, 9:147-169. 被引量:1
  • 6Murata J, Fuchikami T, Hirasawa K. Heuristic optimization using long, medium, and short term memories [J]. T IEE of Japan, 1998, 118-C(9): 1315-1321. 被引量:1
  • 7Tang Z, Jin H H, Ishizuka O, et al. An investigation on a unique solution of the Hopfield and the T-model neural networks [J]. T IEE of Japan, 1998, 118--C(2): 150--160. 被引量:1
  • 8Tang Z, Jin H H, Murao K, et al. A gradient ascent learning for Hopfield networks [J]. T. IEICE of Japan, Mar. ,2000, J83--A(3): 319--331. 被引量:1
  • 9Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc of the Natl Acad of Sci, USA, 1984, 81: 3088--3092. 被引量:1
  • 10Wilson G V and Pawley G S. On stability of the traveling salesman problem algorithm of Hopfield and Tank [J]. Biological Cybernetics, 1988, 58 : 63-- 70. 被引量:1

共引文献16

同被引文献77

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部