期刊文献+

FLiBe、FLiNaK在涡流二极管中流动特性的数值模拟

Numerical simulation of FLiBe and FLiNaK's flow characteristics in vortex diode
原文传递
导出
摘要 涡流二极管作为一种非能动制止阀的设备,被应用于高温熔盐堆的概念设计中,本文利用FLUENT数值模拟分析了涡流二极管内正反向流动的阻力特性及其内部流场,以水、FLiBe和FLiNaK为模拟工作介质,计算了在不同工况下,涡流二极管的正反向流动压降值、阻力系数及阻抗比,为用于钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)非能动辅助冷却系统的涡流二极管设计提供参考依据。模拟计算结果表明:涡流二极管的正反向流阻随着进口雷诺数不断增大,其性能参数阻抗比ε随着雷诺数也相应增大,最后达到临界稳定值;为提高其性能参数阻抗比,对涡流二极管进行结构优化设计,并结合实验进行验证。 Background: As a passive check valve, vortex diode is applied to the design of several fluoride salt-cooled high-temperature reactors. It is installed in the emergency heat removal system that is designed to passively remove reactor decay heat under natural circulation. Purpose: By analyzing FLiBe and FLiNaK's fluidic performance in vortex diode by numerical simulation and comparing with that of water, we could provide a reference for the design of vortex diode applied for the Pool Reactor Auxiliary Cooling System (PRACS) of Thorium Molten Salt Reactor (TMSR). Methods: According to the conceptual design of PRACS, a model of vortex diode was simulated under different working conditions by using Fluent. Taking measures of the best tangential angle and the converging-diverging axial tube is to get better performance. Results: The forward and reverse pressure drops increase with the flow rate, and the diodicity is related to the Reynolds number of working medium, and increases with Re number until a certain value, where the diodieity basically remains unchanged. After structure optimization, the value of diodicity is enhanced to some extent. Conclusion: Based on the results, there is a critical Re number both for FLiBe and FLiNaK in vortex diode. Optimizing the structure design of the vortex diode can improve FLiBe and FLiNaK's performances in vortex diode.
出处 《核技术》 CAS CSCD 北大核心 2014年第5期69-74,共6页 Nuclear Techniques
关键词 涡流二极管 FLIBE FLiNaK 性能参数 结构优化 Vortex diode FLiBe FLiNaK Performance parameters Structure optimization
  • 相关文献

参考文献2

二级参考文献11

  • 1郭彦华,景山,吴秋林,陈靖,宋崇立.涡流二极管泵性能[J].化工学报,2004,55(10):1625-1630. 被引量:7
  • 2Kulkarni A A, Ranade V V, Rajeev R, et al. CFD Simulation of Flow in Vortex Diodes [J]. AIChE Journal, 2008, 54(5): 1139-1152. 被引量:1
  • 3Yang Z Y, Priestman G H. Internal Flow Modelling of Vortex Throttles [J]. Journal of Mechanical Engineering Science, 1991, 205(C6): 405-413. 被引量:1
  • 4Jiang Shengjie (姜圣阶), Ren Fengyi (任凤仪).Nuclear Fuel Reprocessing Engineering Science (核燃料后处理工学).Beijing: Atomic Energy Press, 1995.367-375 被引量:1
  • 5Zhang Chenggang(张成钢), Jing Shan(景山), Wu Qiulin(吴秋林), Chen Jing(陈靖), Song Chongli(宋崇立).Study on the Performance of Airlift Pump.Chemical Reaction Engineering and Technology(化学反应工程与工艺),2003, 19(4): 35 被引量:1
  • 6Guo Yanhua(郭彦华), Jing Shan(景山), Zhang Jianwei(张建伟), Wu Qiulin(吴秋林), Song Chongli(宋崇立).Experimental Study on the Performance of Pneumatic Pulsed Liquid Jet Pump.Chinese Journal of Nuclear Science and Enginee 被引量:1
  • 7Joseph M Kirshner, Silas Katz.Design Theory of Fluidic Components.New York: Academic Press, 1975 被引量:1
  • 8Alistair L,Michael J.Fluidic Apparatus.GB 2209411A.1988 被引量:1
  • 9Geoffrey H.Fluidic Pumps.GB 2220710A.1998 被引量:1
  • 10Yao Yuying (姚玉英).Principle of Chemical Engineering (化工原理).Tianjin: Tianjin University Press,1999.45-60 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部