期刊文献+

融合邻域信息的k-近邻分类 被引量:3

K-nearest neighbor classification algorithm fusing neighborhood information
下载PDF
导出
摘要 距离度量是影响k-近邻(KNN)法分类精度的重要因素之一。提出一种融合邻域信息的k-近邻算法。首先,定义了样本邻域的概念,并根据邻域的影响提出2条相应准则;然后,在计算测试样本与训练样本的距离时,综合考虑了样本邻域所带来的影响。该算法不仅可以更加精确地刻画样本之间的距离,而且一定程度上增强了KNN的稳定性。该方法在UCI标准数据集上进行了测试,结果表明,性能优于或与其他相关的分类器相当,并且在噪声扰动下具有较强的鲁棒性。 Distance measurement is one of the important factors which affect the classification accuracy of the k nea- rest neighbor (KNN) algorithm. In this paper, an improved k nearest neighbor algorithm fusing neighborhood infor- mation is presented. Firstly, the concept of the instance neighborhood is defined and two criterions are presented according to neighborhood influence; then, the influence of the instance neighborhood is comprehensively consid- ered when the distance between the testing instances and the training instances is computed. This algorithm can characterize the distance among instances more precisely, and enhance the stability of the KNN to some extent. This presented method was tested on the UCI datasets, and the results showed that this proposed technique is better than or equal to other classifiers, and it is more robust under the noise disturbance.
出处 《智能系统学报》 CSCD 北大核心 2014年第2期240-243,共4页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61303131 61379021) 福建省自然科学基金资助项目(2013J01028 2012D141) 福建省A类科技资助项目(JA12220)
关键词 K-近邻 邻域信息 分类学习 距离测量 噪音干扰 k-nearest neighbor neighborhood information classification learning distance measurement noise dis- turbance
  • 相关文献

参考文献13

  • 1COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967 (13) : 21-27. 被引量:1
  • 2WU X D, KUMAR V, QUINLAN J R, et al. Top 10 algo- rithms in data mining [ J ]. Knowledge and Information Sys- tems, 2008,14(1) : 1-37. 被引量:1
  • 3吕锋,杜妮,文成林.一种模糊-证据kNN分类方法[J].电子学报,2012,40(12):2390-2395. 被引量:12
  • 4WANG H. Nearest neighbors by neighborhood counting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2005,28 (6): 942-953. 被引量:1
  • 5WILSON D R, MARTINEZ T R. Improve heterogeneous dis- tance functions [ J ]. Journal of Artificial Intelligence Re- search, 1997 (6): 1-34. 被引量:1
  • 6HU Q H, ZHU P F, YANG Y B, et al. Large-margin nea- rest neighbor classifiers via sample weight learning[ J ]. Neu- roeomputing, 2011, 74 (4): 656-660. 被引量:1
  • 7WANG J, NESKOVIC , COOPER L.N. Improving nearest neighbor rule with a simple adaptive distance measure [ J ].Pattern Recognition Letters, 2007, 28 : 207-213. 被引量:1
  • 8KOHAVI R, LANGLEY P, YUNG Y. The utility of feature weighting in nearest neighbor algorithms [ C ]//Proceedings of the Ninth European Conference on Machine Learning. [ S. l.], 1997. 被引量:1
  • 9SUN Y J. herative RELIEF for feature weighting: algo- rithms, theories, and applications [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (6) : 1035-1051. 被引量:1
  • 10MU Y, DING W, TAO D C. Local discriminative distance metrics ensemble learning[J]. Pattern Recognition, 2013, 46 (8) : 2337-2349. 被引量:1

二级参考文献30

  • 1刘明,袁保宗,唐晓芳.证据理论k-NN规则中确定相似度参数的新方法[J].电子学报,2005,33(4):766-768. 被引量:8
  • 2赵莹,高隽,汪荣贵,胡静.一种新的广义最近邻方法研究[J].电子学报,2004,32(F12):196-198. 被引量:13
  • 3Resniek P, Iacovou N, Suchak Met al. GroupLens: An open architecture for collaborative filtering of netnews [C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. Chapel Hill, North Carolina, United States, 1994: 175-186. 被引量:1
  • 4Sarwar B, Karypis G, Konstan J, et al. Item-Based collaborative filtering recommendation algorithms [C]// Proceedings of the 10th Int'l World Wide Web Conference, New York, United States, 2001 : 285-295. 被引量:1
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 ( 6 ) : 734-749. 被引量:1
  • 6Huete F J, Fernandez-Luna J M ,Campos Luis M, et al. Using past-prediction accuracy in recommender systems [ J/OL ]. Information Sciences, http://dx, doi. org/10. 1016/j. ins. s. 2012.02. 033. 被引量:1
  • 7Jeong B,Jaewook L,Cho H. User credit-based collaborative filtering [ J]. Expert Systems with Applications, 2009, 36(6) : 7309-7312. 被引量:1
  • 8Yuan Q, Zhao S, Chen L, et al. Augmenting collaborative recommender by fusing explicit social relationships [ C ]// In ACM RecSys-Workshop, 2009:49-56. 被引量:1
  • 9Sarwar B, Karpis G, Konstan J, et al. Recommender systems for large-scale e-commence:Scalable neighborhood formation using clustering [ C ]//Proceedings of the Fifth International Conference on Computer and Information Technology, 2002. 被引量:1
  • 10O' Connor M ,Cosley D,Konstan J,et al. A recommender system for groups of users [ C ]//Proceedings of the Seventh European Conference on Computer Supported Cooperative Work, Bonn, Germany, 2001:199-218. 被引量:1

共引文献31

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部