期刊文献+

不完备信息系统中测试代价敏感的可变精度分类粗糙集 被引量:7

Test-cost-sensitive based variable precision classification rough set in incomplete information system
下载PDF
导出
摘要 在不完备信息系统中,可变精度分类关系是限制容差关系的改进形式,但其并未考虑数据集中属性的测试代价。为解决这一问题,提出了基于测试代价敏感的可变精度分类粗糙集模型。进一步地,通过分析传统启发式算法没有考虑测试代价以及回溯算法的时间消耗等因素,提出一种新的属性重要度测量,并在此基础上设计了一种新的启发式算法。通过实验对比分析,说明了新提出算法的有效性。 In an incomplete information system, the precision-variable classification relation is an improvement of the limited tolerance relation. However, the test costs of the data concentration attributes are not taken into account. To solve this problem, a test-cost-sensitive-based precision-variable precision classification rough set is proposed. Furthermore, the traditional heuristic algorithm does not take the importance of the test costs of the attributes into account, and backtracking algorithm is very time-consuming. Therefore, not only was a new importance of the at- tribute proposed, but a new heuristic algorithm was also presented for obtaining reduction with minor test costs. The experimental results show the effectiveness of the new algorithm by comparing it with the other algorithms.
出处 《智能系统学报》 CSCD 北大核心 2014年第2期219-223,共5页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61100116 61203024) 江苏省自然科学基金资助项目(BK2011492 BK2012700) 江苏省高校自然科学基金资助项目(11KJB520004 13KJB520003) 高维信息智能感知与系统教育部重点实验室(南京理工大学)基金资助项目(30920130122005) 江苏省普通高校研究生科研创新计划项目资助项目(CXLX13_707)
关键词 属性约简 不完备信息系统 测试代价敏感 变精度分类粗糙集 attribute reduction incomplete information system test cost sensitive variable precision classification rough set
  • 相关文献

参考文献11

  • 1PAWLAK Z. Rough sets-theoretical aspects of reasoning a- bout data [ M ]. Dordrecht : Kluwer Academic, 1991. 被引量:1
  • 2HU Q H, CHE X J, ZHANG L, et al. Rank entropy based decision trees for monotonic classification [ J ]. IEEE Trans- actions on Knowledge and Data Engineering, 2012, 24 ( 11 ) : 2052-2064. 被引量:1
  • 3HU Q H, PAN W W, ZHANG L, et al. Feature selection for monotonic classification[ J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1): 69-81. 被引量:1
  • 4LUO G Z, YANG X B. Limited dominance-based rough set model and knowledge reductions in incomplete decision sys- tem [ J ]. Journal of Information Science and Engineering, 2010, 26(6) : 2199-2211. 被引量:1
  • 5王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303
  • 6杨习贝,杨静宇,於东军,吴陈.不完备信息系统中的可变精度分类粗糙集模型[J].系统工程理论与实践,2008,28(5):116-121. 被引量:17
  • 7MIN F, HE H P, QIAN Y H, et al. Test-cost-sensitive at- tribute reduction [ J ]. Information Sciences, 2011, 181 (22) : 4928-4942. 被引量:1
  • 8MIN F, LIU Q H. A hierarchical model for test-cost-sensi- tive decision systems [ J ]. Information Sciences, 2009, 179 (14) : 2442-2452. 被引量:1
  • 9MIN F, ZHU W. Test-cost-sensitive attribute reduction based on neighborhood rough set[ C ]//2011 IEEE Interna- tional Conference on Granular Computing. Kaohsiung, Chi- na, 2011 : 802-806. 被引量:1
  • 10MIN F, ZHU W. Attribute reduction of data with error ran- ges and test costs [ J]. Information Sciences, 2012, 211: 48 -67. 被引量:1

二级参考文献14

  • 1吴陈,杨习贝,傅凡.基于全相容性粒度的粗糙集模型[J].系统工程学报,2006,21(3):292-298. 被引量:4
  • 2Pawlak Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998,29:661 - 688. 被引量:1
  • 3Pawlak Z. Rough sets and intelligent data analysis[J]. Information Sciences,2002,147:1 - 12. 被引量:1
  • 4刘清.Rough集及Rough推理[M].科学出版社,2001,3. 被引量:4
  • 5Grzymala-Busse J W. On the unknown attribute values in learning from examples[J]. In Proceeding of the 6th International Symposium on Methodologies for Intelligent Systems(ISMIS-91 ), Charlotte,North Carolina, October 16- 19,1991. Lecture Notes in Artificial Intelligence, vol. 542, Springer-Verlag, Berlin, Heidelberg, New York ( 1991 ) 368 - 377. 被引量:1
  • 6Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998,112: 39- 49. 被引量:1
  • 7Yee Leung, Deyu Li. Maximal consistent block technique for rule acquisition in incomplete information systems [ J ]. Information Sciences,2003,15:85 - 106. 被引量:1
  • 8Grzymala-Busse J W,Wang A Y. Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values [ C]//In Proceeding of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC'97) at the Third Joint Conference on Information Sciences (JCIS' 97), Research TrianglePark, NC, March 2 - 5,1997,69 - 72. 被引量:1
  • 9Stefanowski J, Tsoukias A. Incomplete information tables and rough classification[ J ]. Computational Intelligence, 2001,17: 545- 566. 被引量:1
  • 10Wu W Z,Zhang W X,Li H Z. Knowledge acquisition in incomplete fuzzy information systems via the rough set approach[J]. Expert Systems,2003,20(5) : 280 - 286. 被引量:1

共引文献310

同被引文献77

  • 1徐章艳,刘作鹏,杨炳儒,宋威.一个复杂度为max(O(|C||U|),O(|C^2|U/C|))的快速属性约简算法[J].计算机学报,2006,29(3):391-399. 被引量:234
  • 2Yao Y Y, Wong S K M. A decision theoretic framework for approximating concepts[ J]. International Journal of Man-Machine Studies, 1992,37 : 793-809. 被引量:1
  • 3Yao Y Y. The superiority of three-way decisions in probabilistic rough set models [ J ]. Information Sciences,2011,181:1 080- 1096. 被引量:1
  • 4Jia X Y, Tang Z M, Liao W H, et al. On an optimization representation of decision-theoretic rough set model [ J ]. International Journal of Approximate Reasoning,2014,55: 156-166. 被引量:1
  • 5Li H X, Zhou X Z, Huang B, et al. Cost-sensitive three-way decision : a sequential strategy [ C ]//Lingras P, Wolski M, Comelis C, et al. RSKT 2013. LNCS, Heidelberg: Springer, 2013,8 171 : 325-337. 被引量:1
  • 6Liang D C, Liu D, Pedrycz W, et al. Triangular fuzzy decision-theoretic rough sets [ J ]. International Journal of Approximate Reasoning,2013,54(8) : 1 087-1 106. 被引量:1
  • 7Liang D C, Liu D. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets[ J ]. Information Sciences, 2014,276:186-203. 被引量:1
  • 8Liu D, Li T R, Li H X. A multiple-category classification approach with decision-theoretic rough sets [ J ]. Fundamenta Infor- maticae, 2012,115 : 173-188. 被引量:1
  • 9Liu D, Li T R, Liang D C. Incorporating logistic regression to decision-theoretic rough sets for classification [ J ]. International Journal of Approximate Reasoning, 2014,55 ( 1 ) : 197-210. 被引量:1
  • 10Qian Y H,Zhang H, Sang Y L, et al. Multigranulation decision-theoretic rough sets [ J ]. International Journal of Approximate Reasoning,2013,55( 1 ) :225-237. 被引量:1

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部