期刊文献+

具有最小Wiener指数的三圈图(英文) 被引量:1

The tricyclic graphs with minimal Wiener index
下载PDF
导出
摘要 一个连通图的Wiener指数定义为图中所有点对的距离之和.主要研究了三圈图Wiener指数的下界问题,并刻画了达到下界的极值图. The Wiener index W(G) is defined as the sum of distances between all pairs of vertices of a graph G. The graph with the minimum Wiener index among all connected tricyclic graphs with order n is characterized.
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第3期254-257,共4页 Journal of Zhejiang University(Science Edition)
基金 Supported by NSF of Department of Education of Anhui Province(KJ2011A195) Youth Research Fund of Anqing Normal University(KJ201309)
关键词 三圈图 WIENER指数 距离 tricyclic graph Wiener index distance
  • 相关文献

参考文献2

二级参考文献22

  • 1Barefoot C.A.,Entringer R.C.,L.A.Székely.Extremal values for ratios of distances in trees[J].Discrete Appl.Math.,1997,80:37-56. 被引量:1
  • 2Bollobás B.Extremal graph theory[M].Academic Press,London,New York,San Francisco,1978. 被引量:1
  • 3Bollobás B.Modern graph theory[M].Volume 184 of Graduate Texts in Mathematics,Springer,Berlin,Heidelberg,New York,1998. 被引量:1
  • 4Bondy J.A.,Murty U.S.R.Graph theory with applications[M].Macmillan Press,London,1976. 被引量:1
  • 5Dobrynin A.A.,Entringer R.,Gutman I.Wiener index of trees:theory and applications[J].Acta Appl.Math.,2001,66:211-249. 被引量:1
  • 6Dobrynin A.A.,Gutman I.,Klavzar S.,Zigert P.Wiener index of hexagonal systems[J].Acta Appl.Math.,2002,72:247-294. 被引量:1
  • 7Entringer R.C.,Jackoson D.E.,Snyder D.A.Distance in graphs[J].Czechoslavak Math.J.,1976,26:283-296. 被引量:1
  • 8Entringer R.C.,Meir A.,Moon J.W.,Székely L.On the Wiener index of trees from certain families[J].Australas.J.Combin.,1994,10:211-224. 被引量:1
  • 9Fischermann M.,Hoffmann A.,Rautenbach D.,Székely L.,Volkmann L.Wiener index versus maximum degree in trees[J].Discrete Appl.Math.,2002,122:127-137. 被引量:1
  • 10Gutman I.,Soltés L.,The range of the Wiener index and mean isomer degeneracy[J].Z.Naturforsch,1991,46A:865-868. 被引量:1

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部