期刊文献+

基于FP-Growth算法的毕业生管理系统的研究与应用

The Research and Application of Graduate Management System Based on FP-Growth Algorithm
下载PDF
导出
摘要 关联规则是数据挖掘的重要内容之一.Apriori算法是关联规则挖掘的经典算法,本文对Apriori算法和改进后的FP-Growth算法进行了深入的研究,并以实际的案例进行了算法解析,通过对两种算法的比较与分析,选择FP-Growth算法应用到毕业生信息管理系统中,从大量的毕业生信息出发,找出就业信息与教育信息之间的关系,从而为决策者提供指导或数据支持,指导目前的专业建设、课程改革,促进学校的教学改革,提高人才培养质量. The data mining association rules is an important part . Apriori algorithm is a classical algorithm for mining association rules , Apriori algorithm and improved FP-Growth algorithm are conducted in-depth research , and actual cases of the algorithm to parse through the comparison of the two algorithms and analysis, selection FP -Growth algorithm is applied to graduate information management systems, in a large information of graduates , the algorithm can find out the relationship betwean information of education and information of employment, so as to provide guidance or data to support decision-makers to guide our current professional development, curriculum reform, promoting the teaching reform , improve quality of personnel training .
作者 张红荣
出处 《德州学院学报》 2014年第2期61-66,共6页 Journal of Dezhou University
关键词 关联规则 毕业生管理系统 研究 association rules graduate management system research
  • 相关文献

参考文献4

二级参考文献14

  • 1邓丰义,刘震宇.基于模式矩阵的FP-growth改进算法[J].厦门大学学报(自然科学版),2005,44(5):629-633. 被引量:17
  • 2王德兴,胡学钢,刘晓平,王浩.改进购物篮分析的关联规则挖掘算法[J].重庆大学学报(自然科学版),2006,29(4):105-107. 被引量:12
  • 3贾桂霞,张永,陈思睿.一种基于关联模式的完全决策规则的提取方法[J].兰州理工大学学报,2006,32(5):104-107. 被引量:2
  • 4[7]R.Agrawal,R.Sfikant.Fast algorithms formining association rule.In Proceedings of 20th International Conferenceon Very Large Databases Santiago,pages487-488,Chile,1994. 被引量:1
  • 5[6]R.Agrawal,T.Imielinski,andA.Swami.Mining association rules between sets of items in large databases.Proceedings of the ACM SIGMOD Conference on Management of data,page:207-216,1993 被引量:1
  • 6HAND David, MANNILA Heikki, SMYTH Padhraic. Principles of data mining [M].北京:机械工业出版社,2003. 被引量:1
  • 7JAIN A K, MUTRAY M N, FLYNN P J. Data clustering: a review [J]. ACM Computting Surveys, 1999, 31 ( 3 ) : 264-323. 被引量:1
  • 8JAIN A K, MURTAY M N, FLYNN P J. Data clustering: a review [J]. ACM Com-putting Surveys, 1999, 31 (3): 264-323. 被引量:1
  • 9HAN J, KAMBER M. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers, 2001. 被引量:1
  • 10(加)Jiawei Han Micheline Kamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:7

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部