期刊文献+

融合残差Unscented粒子滤波和区别性稀疏表示的鲁棒目标跟踪 被引量:9

Robust object tracking incorporating residual unscented particle filter and discriminative sparse representation
原文传递
导出
摘要 目的提出一种鲁棒的目标跟踪算法,将区别性稀疏表示模型应用于残差Unscented粒子滤波(RUPF)跟踪框架,从而实现对目标高效准确的跟踪。方法利用Unscented卡尔曼(UKF)滤波技术将目标的量测信息引入提议分布,并使用马尔可夫蒙特卡洛(MCMC)移动改进采样结果,提高了滤波的精度,同时有效防止了粒子的退化和贫化。基于稀疏表示建立区别性的目标观测模型,引入的背景成分可以增强算法分辨目标与背景的能力。采用可变方向乘子法(ADMM)解决稀疏表示中的L1优化问题,有效地提升了算法的执行效率。结果通过和其他跟踪算法一起,对标准测试视频进行的大量定性与定量的实验,结果表明,本文跟踪算法的跟踪精度高于一些常见的跟踪算法,同时其时间复杂度低于传统的几种基于稀疏的跟踪算法。结论随着硬件技术的不断发展,UKF滤波技术的速度不断提升,保证了本文算法可以在较高准确率下有更快的执行速度。 Objective A robust tracking approach based on residual unscented particle filter (RUPF) and discriminative sparse representation is proposed to track an object accurately and efficiently.Method The Unscented Kalman filter is used to bring the target's observation into its proposal distribution.Then the Markov chain Monte Carlo (MCMC) improves the sampling result.The accuracy of filtering is enhanced and problems such as particle degeneration and dilution can be restrained with our RUPF.Observation likelihood is modeled based on the discriminative sparse representation,which improves the ability to extract the target from the background.The L1-regularized least squares problem in sparse representation is solved using the alternating direction method of multipliers (ADMM).Result Both quantitative and qualitative experiments are conducted on several challenging image sequences and the comparisons with other state-of-the-art trackers demonstrate that our tracker is more accurate than some common trackers and owns less computational complexity than traditional sparse-based trackers.Conclusion With the development of the hardware,a quickly operated UKF guarantees a faster speed of our tracker with a high tracking accuracy.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第5期730-738,共9页 Journal of Image and Graphics
基金 国家科技支撑计划基金项目(60972001) 苏州市工业科技支撑计划基金项目(SS201223)
关键词 目标跟踪 Unscented粒子滤波 稀疏表示 动态模板更新 可变方向乘子法(ADMM) object tracking Unscented particle filter sparse representation dynamic template update alternating direction method of multipliers (ADMM)
  • 相关文献

参考文献19

  • 1Matthews I, Ishikawa T, Baker S. The template update problem [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6) :810-815.[ DOI: 10. 1109/TPAMI. 2004. 16]. 被引量:1
  • 2Piccardi M, Cheng E D. Track matching over disjoint camera views based on an incremental major color spectrum histogram [ C]//Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance. New York : IEEE, Computer Society, 2006 : 147-152. 被引量:1
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25 (5) :564-577. [DOI: 10. 1109/TPAMI. 2003. 1195991]. 被引量:1
  • 4Porikli F, Tuzel O, Meer P. Covariance tracking using model up- date based on lie algebra [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York : Institute of Electrical and Electronics Engineers Com- puter Society, 2006 : 728-735. 被引量:1
  • 5Avidan S. Support vector tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8) :1064-1072. [ DOI: 10.1109/TPAMI. 2004.53 ]. 被引量:1
  • 6Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE Computer Society, 2009 : 983-990. 被引量:1
  • 7Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking [ C ]//Proceedings of the 10th Euro- pean Conference on Computer Vision. Marseille: Springer Ver- lag, 2008: 234-247. 被引量:1
  • 8Xue M, Ling H. Robust visual tracking using L1 minimization [ C ]//Proceedings of the 12th International Conference on Com- puter Vision. Kyoto: Springer Verlag, 2009: 1436-1443. 被引量:1
  • 9Bao C H, Wu Y, Ji H. Real time robust 11 tracker using acceler- ated proximal gradient approach [ C ]//Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition. Provi- dence,RI, USA: IEEE Computer Society, 2012: 1830-1837. 被引量:1
  • 10Gordon N J, Salmond D J, Amith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J]. Proceed- ings of IEEE F: Radar and Signal Processing, 1993, 140(2) 107-113. 被引量:1

二级参考文献11

  • 1李磊磊,陈家,斌谢玲,刘星桥,徐建华.粒子滤波方法在GPS/DR组合导航系统中的应用[J].微电子学与计算机,2004,21(10):97-99. 被引量:15
  • 2Simon J Juliet, Jeffrey K Uhlmann. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators [J]. IEEE Trans. on AC, 2003,45(3): 477-482. 被引量:1
  • 3Caglar Yardim, Peter Gerstoft, WILLIAM S. Tracking Refractivity from Clutter Using Kalman and Particle Filters [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1058-1070. 被引量:1
  • 4DOUCET A, GODSILL S J, ANDRIEU C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statistics and Computing, 2000,10(3):197-208. 被引量:1
  • 5JULIER S J, UHLMANN J K. Unscented Filtering and Nonlinear Estimation[J]. IEEE Trans. on Signal Processing, 2004,92(3):401-422. 被引量:1
  • 6GORDON N, SALMOND D, SMITH A. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings on Radar, Sonar and Navigation, 1993,140 (2):107-113. 被引量:1
  • 7Y Bar-Shalom,X R Li.Estimation and tracking:Principles,Techniques and Software.Artech House,Boston,MA 被引量:1
  • 8Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nonlinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628~1632 被引量:1
  • 9Julier S J,Uhlmann J K,A new extension of the Kalman filter to nonlinear systems[A].The Proc of Aero sense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54~65 被引量:1
  • 10J Carpenter,P Clifford,P Fearnhead.Improved particle filter for nonlinear problems.IEE proc.Radar,Sonar,Naving.,1999,146(1) 被引量:1

共引文献7

同被引文献66

  • 1Zhang K,Somh H. Real-time visual tracking via online weighted multiple instance learning [ J ]. Pattern Recognition, 2013. 46(1 ) :397-411. 被引量:1
  • 2Ganta R R, Zaheeruddin S, Baddiri N. Segmenlatiun of oil spill images with illumination-reflectance based adaptive level set mo- del [ J ]. IEEE Journal of Selected Topics in Applied Earth Obser- vations and Remote Sensing, 2012, 5 ( 5 ) : 1394-1402. [ DOI: 10. 1109/JSTARS. 2012. 2201249 ]. 被引量:1
  • 3Wu J W, Hu S. 3D object tracking using meanishift and similari- ty-based aspect-graph modeling[ C ]// The 33rd Annual Confer- ence of the IEEE Industrial Electronics Society. Taipei China: IEEE, 2007,5(8): 2383-2388. 被引量:1
  • 4Mukherjee D P, Acton S T. Affine and projective active contour models[ J]. Pattern Recognition, 2007, 40(3): 920-930. 被引量:1
  • 5Cavallavo A, Steiger O, Ebrahimi T. Tracking video objects in cluttered background[ J ]. IEEE Transactions on Circuits Systems for Video Technology, 2005,15(4) : 575-584. 被引量:1
  • 6Rathi Y, Vaswani N, Tannenbaum A. A generic framework for tracking using particle filter with dynamic shape prior[ J ]. IEEE Transactions on Image Processing, 2007, 16(5) :1370-1382. 被引量:1
  • 7Freedmau D, Zhang T. Active contours for tracking distrtmtions [J]. IEEE Transactions on Image Processing, 2004, 13(4): 518-526. 被引量:1
  • 8Zhang T, Freedman D. Improving performance of distribution tracking through background matching[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 2 ) : 282- 287. 被引量:1
  • 9Wu Y W, Ma B. Learning distribution metric for object contour tracking[ C]//Proceedings of International Conference on Multi- media Technology. Hangzhou: IEEE, 201113120-3123. [DOI: 10. 1109/ICMT. 2011. 6001851 ]. 被引量:1
  • 10Ning J F, Zhang L, Zhang D. Joint registration and active con- tour segmentation for object tracking [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2013,23 (9) :1589- 1597. 被引量:1

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部