期刊文献+

三参数边界强度过程模型及其在数控机床可靠性评估中的应用 被引量:4

Three-Parameter Bounded Intensity Process Model and Its Application in Reliability Assessment of NC Machine Tools
下载PDF
导出
摘要 为提高数控机床可靠性评估的准确性,基于边界强度过程理论,提出一种初始时刻故障强度不为零的三参数边界强度过程模型。通过对故障强度函数进行求导运算,证实了模型的特性,并推导了三参数边界强度过程和齐次泊松过程之间的关系。利用极大似然估计法和优化方法,给出了模型参数及可靠性指标的计算公式。分别以单台数控机床故障截尾数据和多台数控机床时间截尾数据为例对模型进行验证,对数似然函数及拟合优度计算结果均表明:三参数边界强度过程模型优于边界强度过程模型,而且更符合工程实际,可为制定合理的维修策略提供一定的理论依据。 To improve the reliability assessment accuracy of NC machine tools, a three-parameter bounded intensity process(3-BIP)model by intensity function with non-zero initial condition is proposed. The characteristic of the model is confirmed by differentiating with respect to the failure intensity function, and the relationship between the three-parameter bounded intensity process and the homogenous Poisson process is derived. The calculating formula for model parameters and reliability indexes are deduced by the maximum likelihood estimation and optimization. Two examples of the failure truncated data from single NC machine tool and the time truncated data from multiple NC machine tools are taken respectively to verify the proposed method. The results of log-likelihood function and goodness-of-fit show that the 3-BIP model is better than the BIP model, so the 3-BIP model accords with practical engineering well and provides a theoretical basis for making a reasonable maintenance strategy.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第5期107-112,共6页 Journal of Xi'an Jiaotong University
基金 国家重大数控专项资助项目(2010ZX04001-032) 国家自然科学基金资助项目(51165018)
关键词 三参数边界强度过程 极大似然估计 数控机床 可靠性评估 three-parameter bounded intensity process maximum likelihood estimation NC machine tool reliability assessment
  • 相关文献

参考文献13

  • 1康锐,李瑞莹,王乃超,等.可靠性与维修性工程概论[M].北京:清华大学出版社,2010. 被引量:4
  • 2张英芝,申桂香,薛玉霞,贾亚洲,李研.随机截尾数控机床故障过程[J].吉林大学学报(工学版),2007,37(6):1346-1348. 被引量:13
  • 3MARSHALL S E, CHUKOVA S. On analyzing war- ranty data from repairable items [J]. Quality and Reli- ability Engineering International, 2010, 26 (1) : 43-52. 被引量:1
  • 4王智明,杨建国,王国强,张根保.多台数控机床最小维修的可靠性评估[J].哈尔滨工业大学学报,2011,43(7):127-130. 被引量:26
  • 5WANG Z M, YU X. Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled ma- chine tools[J]. Proceedings of the Institution of Me- chanical Reliability Engineers: Part O Journal of Risk and Reliability, 2013, 227: 55-65. 被引量:1
  • 6ASCHER H, FEINGOLD H. Repairable systems reli- ability: modeling, misconceptions and their causes [M]. New York, USA: Marcel Dekker, 1984. 被引量:1
  • 7PULCINI G. A bounded intensity process for the reli- ability of repairable equipment [J]. Journal of Quality Technology, 2001, 33(4): 480-492. 被引量:1
  • 8王智明,杨建国.数控机床可靠性评估中的边界强度过程[J].上海交通大学学报,2012,46(10):1622-1626. 被引量:15
  • 9THOMPSON W A. On the foundation of reliability [J].Technometries, 1981, 23(1): 1-13. 被引量:1
  • 10ENGELLHARDT M, BAIN L J. On the mean time between failures for repairable systems [J]. IEEE Transactions on Reliability, 1986, 35(4): 419-422. 被引量:1

二级参考文献38

共引文献64

同被引文献38

  • 1许彬彬,杨兆军,陈菲,郝庆波,赵宏伟,李国发.非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报(工学版),2011,41(S2):210-214. 被引量:16
  • 2Syamsundar A, Naikan V N A. Imperfect repair proportional intensity models for maintained systems[J]. IEEE Transactions on Reliability, 2011, 60(4): 782-787. 被引量:1
  • 3Kijima M, Sumita N. A useful generalization of renewal theory: Counting process governed by non-negative Markovian increments[J]. Appl ]?rob, 1986, 23: 71-88. 被引量:1
  • 4Cox D R. The statistical analysis of dependencies in point process[C] // Lewis P A W. Stochastic Point Processes. New York: Wiley-Interscience, 1972: 55-66. 被引量:1
  • 5Kaminskiy M, Krvtsov V. A Monte Carlo approach to repairable system reliability analysis[C]// Mosleh A. Probabilistic SafetyAssessment and Management. New York: Springer, 1998: 1063-1068. 被引量:1
  • 6Doyen L. Asymptotic properties of imperfect repair models and estimation of repair efficiency[J]. Nav Res Logist, 2010, 57: 296-307. 被引量:1
  • 7Gasmi S. Estimating parameters of a log-linear intensity for a repairable system[J]. Applied Mathematical Modelling, 2013, 37(6): 4325-4336. 被引量:1
  • 8Gasmi S. Parameter estimation in an alternating repair model[J]. Journal of Statistical Planning and Inference, 2011, 141(11): 3605-3616. 被引量:1
  • 9Wang Z M, Yang J G. Numerical method for Weibull generalized renewal process and its applications in reliability analysis of NC machine tools[J]. Computers & Industrial Engineering, 2012, 63: 1128-1134. 被引量:1
  • 10Lawless J F, Thiagarajah K. A point-process model incorporating renewals and time trends, with application to repairable systems[J]. Technimetrics, 1996, 38(2): 131-138. 被引量:1

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部