期刊文献+

电流模电路的小波神经网络测试研究

Test on Current Model Circuits Using WNN
下载PDF
导出
摘要 提出一种基于多尺度小波分解及神经网络映射归纳的测试电流模电路故障缺陷的方法.针对CMOS器件典型故障建立了测试所需的故障模型,给电路节点加入故障模型进行故障响应测试.对故障信号进行时域采样,采用小波多尺度分解对故障相应信号进行频域多尺度分解,然后将处理数据作为神经网络训练样本,对各类缺陷响应结果进行分类、识别,最后根据可接受偏差范围确定信号为故障或非故障.给出了6类故障的故障覆盖率测试结果. An efficient defect-oriented parametric test method for current model circuits using Wavelet Neural Networks (WNN) is proposed, in which the nonlinear mapping, Neural Network generalizing and multiple-scale analysis are adopted. Aiming at the typical fault cases of CMOS, the required fault model is established and be joined for fault emulational test. The output was sampled in time domain, wavelet multi-scale decomposition is used for various response data preprocessing and then the Neural network is used to classificat response results of different defects. In the end, signal fault or fault is determined according to the acceptable tolerances. Six kinds of fault coverage are demonstrated.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2014年第2期51-55,共5页 Journal of Natural Science of Hunan Normal University
基金 国家杰出青年科学基金资助项目(50925727) 国防预研重大基金资助项目(C1120110004) 中国博士后科学基金资助项目(2013M541819) 湖南省科技计划资助项目(2010J4 2011JK2023)
关键词 电流模 测试 小波分解 神经网络 current model test wavelet decomposition neural networks (NN)
  • 相关文献

参考文献17

  • 1KIM H S, JEON J Y, LEE S W, et al. A compact-sized 9-bit switched-current DAC for AMOLED mobile display drivers[J]. IEEE Trans Circuits Syst I1 : Express Briefs, 2012,58(12) :887-891. 被引量:1
  • 2SAETHER G E, TOUMAZOU C, TAYLOR G, et al. Concurrent self test of switched current circuits based on the S 2I-tech- nique[J]. IEEE Int Symp Circuits Syst, 1995,12(2) :841-844. 被引量:1
  • 3戴力,庄奕琪,景鑫,杜永乾,汤华莲,李振荣.一种新型高性能CMOS电流模式的动态规划电路[J].西安交通大学学报,2012,46(6):29-35. 被引量:2
  • 4刘美容,何怡刚,赵新民.基于混沌的模拟电路故障诊断方法[J].湖南师范大学自然科学学报,2012,35(3):34-39. 被引量:3
  • 5彭良玉,禹旺兵.基于小波分析和克隆选择算法的模拟电路故障诊断[J].电工技术学报,2007,22(6):12-16. 被引量:15
  • 6GU H Y, ZHANG F, WANG Z J, et al. Identification method for low-vohage Arc fault based on the loose combination of wave- let transformation and neural network [ C ]. IEEE Power Engineering and Automation Conference ( PEAM), Wuhan, China, 2012. 被引量:1
  • 7DAVANIPOOR M, ZEKRI M, SHEIHOLESLAM F. Fuzzy wavelet neural network with an accelerated hybrid learning algorithm [J]. IEEE Trans Fuzzy Sys, 2012,20(3) :463-470. 被引量:1
  • 8徐崇斌,赵志文,郑慧芳.ELVQ算法实现宽参数偏移的多故障电路诊断[J].电子与信息学报,2011,33(6):1520-1524. 被引量:3
  • 9ABOHAGAR A A, MUSTAFA M W. Back propagation neural network aided wavelet transform for high impedance fault detec- tion and faulty phase selection[ C]. IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2012. 被引量:1
  • 10CORDOVA J J, YU W, LI X O. Haar wavelet neural networks for nonlinear system identification[ C ]. 2012.IEEE Internation- al Symposium on Intelligent Control (ISIC), Dubrouk, Croatia, 2012. 被引量:1

二级参考文献69

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部