期刊文献+

基于物联网设备检测数据的城市轨道交通车站站台多维度实时客流密集度指数预测方法研究 被引量:13

Real-time Forecast of Passenger Crowd Index on Urban Rail Transit Station Platform Based on Test Data of Internet of Things
下载PDF
导出
摘要 实时准确的客流预测是城市轨道交通客流预警和疏导的基础。本文针对城市轨道交通车站站台的实时客流密集度指数预测问题,根据实时客流的"间歇性"特点,依据30s为周期的真实检测数据,分别构建低、中、高3个时间维度在线实时预测模型。根据应用需要,对30s低纬度预测采用自回归与移动平均整合模型(ARIMA),对3min左右中维度提出多因素logistic预测模型,15min构建一种灰色与移动平均整合模型,并分别对预测参数进行估计。通过对10余个车站早晚高峰及平峰不同数据的大量在线实验验证模型的准确性,以北京地铁动物园站为例进行介绍,3个维度精度分别达到97%、95%、99%。结果表明:采用本文提出的模型较其他时间序列模型进行城市轨道交通车站设施的实时客流预测,具有更好的预测性能。本文所提模型已经用于北京市轨道交通安全防范物联网示范工程中,初步取得较好的实践效果。 Accurate real-time forecast of passenger flow is the basis of passenger flow early warning and evacua-tion in urban rail transit.This article focused on the real-time station platform passenger crowd index on fore-cast problem present with urban rail transit.According to the intermittent feature of real-time passenger flow, the on-line real-time forecast models for 30 s,3 min and 15 min dimensions were built on the basis of 30 s cyc-ling of real test data.In view of practical needs,the ARIMA model for 30 s,the multi factor logistic model for 3 min and the integrated gray and move average model for 1 5 min were built to estimate forecast parameters re-spectively.On-line tests during morning and evening peak time and common time at more than 10 stations proved the correctness of the structrual models.Taking the Beij ing Metro Zoo Station for case study,the de-grees of accuracy corresponding to the three above-mentioned time dimensions were obtained as 9 7%,9 5% and 9 9%.The research results show that the proposed models are of good effects on predicting real-time passenger flow in urban rail transit stations.The models have been used in the demonstrative project of the Beijing Metro internet of things for safety and initial results have been achieved.
出处 《铁道学报》 EI CAS CSCD 北大核心 2014年第3期9-13,共5页 Journal of the China Railway Society
基金 中央高校基本科研费专项资金(T13JB00170 T14JB00090) 北京市自然科学基金(9132015)
关键词 物联网 城市轨道交通 多维度 客流密集度指数 实时预测 internet of things urban rail transit multi-dimension passenger crowd index real-time forecast
  • 相关文献

参考文献10

  • 1STEPHANEDESVJ,MICHALOPOULOSPG,PLUMR A.ImprovedEstimationofTrafficFlowforReal-TimeControl(Discussionandclosure)[J].JournaloftheTransportalionResearchBoard,1981,795:28-39. 被引量:1
  • 2SMITH BL,DEMETSKY M J.TrafficFlow Forecasting:ComparisonofModelingApproaches[J].JournalofTransportationEngineering,1997,123(4):261-266. 被引量:1
  • 3AHMED M S,COOK A R.AnalysisofFreewayTrafficTime-seriesDataby Using Box-jenkins Techniques[J].TransportationResearchRecord:JournaloftheTransportationResearchBoard,1979,722:1-9. 被引量:1
  • 4CHEN HB,GRANT-mullerS.UseofSequentialLearningforShort-term TrafficFlowForecasting[J].TransportationResearchPartC,2001,9(5):319-336. 被引量:1
  • 5OKUTANII,STEPHANEDESYJ.DynamicPredictionofTrafficVolumethroughKalmanFilteringTheory[J].TransportationResearchPartB,1984,18(1):1-11. 被引量:1
  • 6WILLIAMSBM.MultivariateVehicularTrafficFlowPrediction:EvaluationofARIMAX Modeling[J].TransportationReserch Record:Journalofthe Transportation ResearchBoard,2001,1776:194-200. 被引量:1
  • 7WILLIAMSBM,DURVASULAPK,BROMNDE.UrbanFreewayTrafficFlowPrediction:ApplicationofSeasonalAutoregressiveIntegratedMovingAverageandExponentialSmoothingModels[J].Transportation ReserchRecord:Journalofthe Transportation Research Board,1998,1644:132-141. 被引量:1
  • 8盘罗敏.地铁短时客流量预测预警研究[D].北京:首都经济贸易大学,2011:10-15. 被引量:1
  • 9刘晓琴,姚晓晖,庞雷.马尔科夫链模型在铁路春运客流预测中的应用[J].安全,2010,31(12):5-7. 被引量:10
  • 10LIDe-wei,YIN Hao-dong.MeasuringPassengerCrowdindexSubwayNetwork:BeijingExperience[C]//TransportationResearchBoard.WashingtonDC:NationalResearchCouncil,2014:1-18. 被引量:1

二级参考文献3

共引文献9

同被引文献127

引证文献13

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部