期刊文献+

基于改进Apriori算法对丁书文治疗期前收缩用药规律的研究 被引量:2

Ding Shu-wen's Experience of Chinese Medicine on Extrasystoles Based on Improved Apriori Algorithm
下载PDF
导出
摘要 目的;探讨丁书文教授治疗期前收缩的用药规律。方法:应用中医门诊电子病历收集丁书文教授期前收缩医案210份,其他疾病医案990份,并通过验案分析系统采用改进的Apriori算法进行数据挖掘。结果:在最小置信度分别为0.2、0.1得到的处方模型中黄连、青蒿、当归、丹参、黄芪、麦冬、三七粉、五味子、延胡索均出现。结论:丁书文教授治疗高血压病,喜用黄连、青蒿、当归、丹参、黄芪、麦冬、三七粉、五味子、延胡索。 Objective : To explore Ding Shuwen contractive laws of medicine on extrasystoles . Methods : Col lecting 210 the clinical cases on extrasystoles treated by Ding Shuwen, 990 cases on other disease, via traditional Chinese medicine clinic electronic medical record system, the data were excavated based on the improved Apriori algorithm by excellent case analysis system. Results: Artemisia annua, angelica, Rhizoma Coptidis, radix salviae miltiorrhizae, Radix Ophiopogonis, threeseven powder, Schisandra, Rhizoma corydalis all appeared in the pre scription model that evolved from whose mimimum confidence levels are 0.2,0. 1. Conclusion: Professor Ding Shuwen has partiality for Rhizoma, Artemisia annua, angelica, radix salviae mihiorrhizae, Radix Astragali, Radix Ophiopogonis, threeseven powder, Schisandra chinensis, Rhizoma corydalis in the treatment of hypertension.
出处 《山西中医》 2014年第4期44-45,共2页 Shanxi Journal of Traditional Chinese Medicine
关键词 丁书文 期前收缩 用药规律研究 改进的Apriori算法 Keywords :Ding Shu-wen, extrasystoles, laws of drug, improved Apriori algorithm
  • 相关文献

参考文献5

  • 1陈守强,张建民.中医门诊电子病历的设计与应用研究[J].山东中医药大学学报,2002,26(6):428-429. 被引量:14
  • 2Agrawal R,Srikan R. Fast algorithms for mining association rules in lager databases [ C ]//Proceedings of the Twentieth Interna- tional Conference on Very Large Databases, Santiago, Sep 1994 : 487 - 499. 被引量:1
  • 3刘维晓,陈俊丽,屈世富,万旺根.一种改进的Apriori算法[J].计算机工程与应用,2011,47(11):149-151. 被引量:35
  • 4黄春林主编..心血管科专病中医临床诊治[M].北京:人民卫生出版社,2000:403.
  • 5李七一,方祝元主编..心脑血管疾病中医诊治[M].北京:人民卫生出版社,2001:474.

二级参考文献6

  • 1Agrawal R, Srikan R.Fast algorithms for mining association rules in lager databases[C]//Proceedings of the Twentieth International Conference on Very Large Databases,Santiago,Sep 1994:487-499. 被引量:1
  • 2Gray B, Orlowska M E.CCAIIA: Clustering categorial attribute into interesting association rules[C]//Proceedings of the 2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Australia, April 1998.Berlin: Springer, 1998. 被引量:1
  • 3Klemettinem M, Mannila H, Ronkainen R.Finding interesting rules from large set of discovered association rule[C]//Procecdings of the 3rd Int'l Conf on Information and Knowledge Management, Gaithersburg, Maryland, USA, 1994.New York, USA: ACM, 1994. 被引量:1
  • 4Symth P, Goodman R M.An information theoretic approach to rule induction from databases[J].IEEE Trans on Knowledge and Data Engineering, 1992,4(4):301-316. 被引量:1
  • 5Liu Chaohui, An Jiancheng.Fast mining and updating frequent itemsets[C]//ISECS International Colloquium, CCCM' 08,2008, 1 : 365-368. 被引量:1
  • 6Mitra S,Ral S K,Mitra EData mining in soft computing frame-work: A survey[J].IEEE Trans on Neural Networks, 2002,13 ( 1 ). 被引量:1

共引文献46

同被引文献41

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部