期刊文献+

多层模糊控制的电力机车发动机调度

Reserch on Engine Scheduling of Electric Locomotive Based on Multi-Layer Fuzzy Control
下载PDF
导出
摘要 在研究基于多层模糊控制的电力机车发动机调度方法中,传统的电力机车发动机调度算法采用经典控制模型或线性控制模型,鲁棒性差,无法达到最优的调度效能。为此提出一种基于多层模糊控制的电力机车发动机调度方法,采用多层模糊系统强大的输入输出非线性映射能力,在输入层,将输入数据模糊化为模糊控制器的输入数据,在输出层,将模糊控制器的输出解模糊为电力机车系统识别的控制信号,从而实现电力机车系统发动机的智能化调度。和传统的调度算法相比较,新调度算法具有更高的电能使用效率,约高于传统算法18%,算法响应时间短,稳定可靠,并且具有很强的鲁棒性,具有优越的应用性能。 Study on the engine scheduling of electric locomotive based on multi-layer fuzzy control. In traditional method, the classic control model or linear control model was used. An engine scheduling module of electric locomotive based on multi-layer fuzzy control was proposed, the nonlinear mapping ability between input and output was used, in the input layer, the data was transformed into fuzzy controller input data, in the output layer, the fuzzy data was output as the electric locomotive system identification control signal. Compared with traditional scheduling algorithm, the new scheduling algorithm has about 18%higher energy efficiency, the algorithm responses with less time and it is stable, reli-able, the robustness of the algorithm is very good with perfect performance in application.
作者 许瑞利 张健
出处 《科技通报》 北大核心 2014年第2期206-208,共3页 Bulletin of Science and Technology
关键词 多层模糊控制 电力机车 发动机调度方法 鲁棒性 multi-layer fuzzy control electric locomotive engine scheduling robustness
  • 相关文献

参考文献6

二级参考文献39

  • 1陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135. 被引量:26
  • 2葛爱冬,隋青美,王斌鹏.混合神经网络建模方法在青霉素发酵过程中的应用[J].山东轻工业学院学报(自然科学版),2006,20(3):30-33. 被引量:6
  • 3Mendel J M, John R I. Type-2 fuzzy sets made simple[J].IEEE Trans. on Fuzzy System, 2002, 10(2) : 117 - 127. 被引量:1
  • 4Mendel J M. Advances in type-2 fuzzy sets and systems[J]. Information Sciences, 2007, 177(1): 84-110. 被引量:1
  • 5Sugeno M,Yasukawa T. A fuzzy-logic based approach to qualitative modeling[J]. IEEE Trans. on Fuzzy System, 1993, 1 (1) : 7 - 31. 被引量:1
  • 6Sepulveda R, Castillo O, Melin P. Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic[J]. Information Sciences, 2007, 177(10) : 2023 - 2048. 被引量:1
  • 7Karnik N N, Mendel J M. Operation on type-2 fuzzy sets[J]. Fuzzy Sets and System, 2001, 122:327 - 348. 被引量:1
  • 8Fazel Zarandi M H, Turksen I B. Type-2 modeling for desulphurization of steel process[J]. Expert Systems with Applications, 2007, 32: 157-171. 被引量:1
  • 9Ordonez C, Omiecinski E. FREM: fast and robust EM clustering for large data sets[C]//Proceedings of the 11th International Conference on Information and Knowledge Management, 2002:590-599. 被引量:1
  • 10王梦灵,侍洪波.基于改进的最小邻域算法的模糊神经网络[C]∥第23届中国控制会议,2004:293-297. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部