期刊文献+

应用纳米压痕法测定柱状纳米材料的力学特性(英文) 被引量:1

Determination of the Mechanical Properties of Nano-Pillars Using the Nanoindentation Technique
下载PDF
导出
摘要 纳米压痕法在确定纳米结构材料,特别是具有较大高宽比的一维纳米结构/对象的力学特性时,若纳米结构沿压入方向的等效刚度远小于针尖-样品的接触刚度,应用常规数据分析(Oliver-Pharr)模型会导致较大的测量偏差.对常规Oliver-Pharr解析模型进行了推广,以补偿一维纳米材料等效刚度对测量结果的影响,进而提出了适用于此类测量对象的通用纳米压痕分析模型,并应用于分析柱状微纳米结构的准静态压痕测量数据.实验中应用原子力显微镜(AFM)定量测量了湿法刻蚀获得的一维单晶硅柱状结构的几何参数(包括硅纳米柱的直径和长度).实验结果表明,应用常规模型分析对较大高宽比的硅纳米柱(直径386 nm,长500 nm)的压痕数据会导致大于50%的偏差.应用修正模型分析实验数据时,测量结果不受被测对象几何参数的影响,因而可以有效提高应用纳米压痕法对微纳米结构材料,特别是一维材料的测量精度. The measurement uncertainty of depth sensing indentation technique (also referred to as nanoindentation technique) for the determination of the mechanical properties of nano-objects is subject to plenty of error sources, including sample roughness, indentation size effect (ISE) , etc. Regarding one- dimensional (1D) nano-objects with relatively large aspect ratio, it is revealed in this paper that the equivalent specimen stiffness of this kind of nano-objects becomes one of the main error sources for quan- titative nanoindentation measurement. For the purpose of improvement of the measurement uncertainty of nanoindentation testing for 1D materials, the currently available Oliver-Pharr method is further extended to compensate for the negative influence of the specimen stiffness of 1D nano-objeets. To verify the feasi- bility of this practical data interpretation method, nanoindentation tests on silicon nano-pillars with differ- ent pillar diameters were performed. The geometrical dimensions (i.e. vertical height and in-plane diam- eter, respectively) of these chemically etched nanopillars were quantitatively determined by atomic force microscopy (AFM). Experimental results indicate that the measurement error would amount to higher than 50% for nanopillars with actual diameter of 386 nm and an aspect ratio of about 1.3 in the case of Oliver-Pharr data evaluation method being applied. In contrast, with the proposed data interpretation method for nanoindentation testing, the measurement results are no longer sensitive to the geometrical di- mensions of nanopillars.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第3期182-188,共7页 Nanotechnology and Precision Engineering
基金 欧洲计量联合研究计划资助项目(EMRP)
关键词 纳米对象 纳米柱 纳米材料测试 纳米压痕法 尺寸效应 nano-objeets nano-pillars nanoscale material testing nanoindentation techqnique sizeeffect
  • 相关文献

参考文献15

  • 1Schneider D, Schuhrich B, Scheibe H J, et al. A laser- acoustic method for testing and classifying hard surface lay- ers[Jl. Thin Solid Films, 1998, 332(1/2) : 157-163. 被引量:1
  • 2Gao S, Herrmann K. A microelectromechanieal force actua- tor for nano-tensile testing system [ C ]// Proceedings ofSPIE-The International Society for Optical Engineering. Strasbourg, France, 2008, 6993: 69930H. 被引量:1
  • 3Oliver W C, Pharr G M. An improved technique for deter- mining hardness and elastic modulus using load and dis- placement sensing indentation experiment [ J ]. Journal of Materials Research, 1992, 7(6) : 1564-1583. 被引量:1
  • 4Pharr G M, Bolshakov A. Understanding nanoindentation unloading curves [ J ]. Journal of Materials Research, 2002, 17(10) : 2660-2671. ISO 14577-1. 被引量:1
  • 5Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters-Part 1 : Test Method[ S]. 2002. 被引量:1
  • 6Gerberich W W, Tymiak N I, Grunlan J C, et al. Interpre- tations of indentation size effects [ J ]. Journal of Applied Mechanics, 2002, 69 (4) : 433-442. 被引量:1
  • 7Faghihi D, Voyiadjis G Z. Determination of nanoindentation size effeets and variable material intrinsic length scale for body-centered cubic metals [ J ]. Mechanics of Materials, 2012, 44: 189-211. 被引量:1
  • 8Nix W D, Gao H J. Indentation size effeets in crystalline materials: A law for strain gradient plasticity [ J ]. J Mech Phys Solids, 1998, 46(3) : 411-425. 被引量:1
  • 9Huang Y, Zhang F, Hwang K C, et al. A model of size effects in nano-indentation [ J ]. Journal of the Mechanics and Physics of Solids, 2006, 54 (8) : 1668-1686. 被引量:1
  • 10Widjaja A, van der Giessen E, Needleman A. Discrete dis- location analysis of the wedge indentation of polycrystals [J]. Acta Materialia, 2007, 55 (19): 6408-6415. 被引量:1

同被引文献10

  • 1霍德鸿,梁迎春,程凯,董申.基于原子力显微镜和分子动力学的纳米压痕技术研究[J].机械工程学报,2004,40(6):39-44. 被引量:16
  • 2Bhushan B. Nanoscale tribophysics and tribomechanics[ J]. Wear, 1999, 225/226/227/228/229(4) : 465-492. 被引量:1
  • 3Landman U, Luedtke W D, Burnham N A, et al. Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture[J]. Science, 1990, 248(4954):454-461. 被引量:1
  • 4Dzegilenko F N, Srivastava D, Saini S. Nanoscale etching and indentation of a silicon ( 111 ) surface with carbon nano- tube tips [J]. Nanotechnology, 1999,10(3) : 253-257. 被引量:1
  • 5Liu C L, Fang T H, Lin J F. Atomistic simulations of hard and soft films under nanoindentation [ J ]. Materials Science and Engineering A, 2007, 452/453 : 135-141. 被引量:1
  • 6Fang T H, Weng C I, Chang J G. Molecular dynamics anal- ysis of temperature effects on nanoindentation measurement [ J ]. Materials Science and Engineering A , 2003, 357 ( 1/ 2) : 7-12. 被引量:1
  • 7Tabor D. The Hardness of Metals Oxford [ M ]. Clarendon Press, 1982: 44-51. 被引量:1
  • 8Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile[J]. Eng Sci, 1965, 3(1) : 47-56. 被引量:1
  • 9Yan J, Maekawa K, Tamaki J, et al. Experimental study on the uhraprecision ductile machinability of single-crystal ger- manium[ J ]. JSME International Journal, 2004, 47 ( 1 ) : 29-36. 被引量:1
  • 10徐飞飞,张效栋,房丰洲.金刚石刀具单点切削单晶硅加工表面特性[J].纳米技术与精密工程,2013,11(6):485-491. 被引量:14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部