摘要
采用高温高浓度的溶剂热方法,合成了具有高结晶度的一种金属-有机骨架(metal-organic framework,MOF)材料UiO-66(Hf),并发现该材料在沸水、酸碱等苛刻条件下具有非常好的化学稳定性。为了提高其对气体的吸附分离性能,进一步采用具有不同官能团的有机配体——氨基对苯二甲酸(H2BDC-NH2)、硝基对苯二甲酸(H2BDC-NO2)、溴对苯二甲酸(H2BDC-Br),设计合成了孔道表面具有不同化学性质的三种新型铪MOF材料,且这些材料与UiO-66(Hf)具有相同的拓扑结构。同时,气体吸附实验结果表明,极性基团的引入,尤其是氨基的引入,能极大提高材料对CO2/N2以及CO2/CH4体系的分离性能。这为以后应用于化工体系分离的新型多孔材料合成提供了理论指导。
By a high temperature and high concentration method, a metal-organic framework (MOF), UiO-66(Hf), was synthesized in a high degree of crystalline, and its thermal and chemical stability were examined in various environments including boiling water as well as strong acidic and basic solutions. In order to enhance its performance for gas separation, three new Hf-based MOFs with the pore surfaces having different chemical properties were further synthesized, using three organic ligands with different functional groups, aminoterephthalic acid (H2BDC-NH2), nitroterephthalic acid (H2BDC-NO2) and bromoterephthalic acid (H2BDC-Br). The synthesized materials were characterized using PXRD, TG, and N2 adsorption measurements, and the separation performance of these MOFs towards CO2/N2 and CO2/CH4 systems were also explored on the basis of adsorption isotherms for CO2, N2 and CH4. It is shown that the material presents exceptionally high stability under these conditions. The materials modified with functional groups have the same topology to the parent UiO-66(Hf). In addition, the introduction of polar functional groups, especially the amino (-NH2) group, can greatly improve the separation performance of materials for the removal of CO2 from these two systems. The knowledge obtained may provide theoretical guidance for the synthesis of novel nanoporous materials towards practical applications in the separation of chemical systems of interest.
出处
《化工学报》
EI
CAS
CSCD
北大核心
2014年第5期1706-1715,共10页
CIESC Journal
基金
国家重点基础研究发展计划项目(2013CB733503)
国家自然科学基金项目(21136001
21322603)
教育部新世纪优秀人才项目(NCET-12-0755)~~