期刊文献+

二次生长法制备ZIF-8膜及其对CO_2/N_2的分离性能 被引量:4

Gas separation properties of zeolitic imidazolate framework-8 membranes prepared by secondary synthesis
下载PDF
导出
摘要 采用二次生长法在α-Al2O3载体上制备超薄型ZIF-8膜,研究了多种轻分子气体以及混合气体CO2/N2的渗透分离性能。通过SEM和XRD表征了ZIF-8晶种层的晶种涂布状态,以及ZIF-8晶体膜的生长覆盖度和晶膜厚度。研究结果表明:采用低浓度的晶种悬浮液通过浸润式连续多次涂布法,有利于获得晶种层厚度均匀且覆盖度高的超薄均匀ZIF-8晶种层,经过二次生长后所得ZIF-8膜的覆盖度高、厚度均匀且较薄,仅约为8.8?m;在所测试范围内的CO2/N2混合气体中,此ZIF-8膜对CO2具有优先选择透过性,其对CO2/N2的渗透分离因子随温度的升高而降低,随渗透压力的增加而增加,在298 K、406 kPa和CO2组分含量为50%时,该分离因子能达到6,显著超过Knudsen扩散的分离系数。 Permeation and separation properties for CO2/N2 mixtures with high quality, thin (~8.8μm) zeolitic imidazolate framework-8 (ZIF-8) membranes prepared by the secondary growth method were studied at different temperatures and feed pressures. The crystal structure, surface coverage, uniformity of the prepared ZIF-8 seeding layers and membranes were characterized by using SEM and XRD. The low concentration of the seed suspension and subsequent dip-coating method helped to obtain a more uniform, continuous and ultrathin ZIF-8 seeds layer of support; the synthesized ZIF-8 membranes offered selective permeation for CO2over N2with CO2/N2 mixture feed under the experimental conditions studied. The separation factor of CO2/N2 mixed gas through a ZIF-8 film decreased with increasing temperature, but increased with increasing feed pressure. Its separation factor of CO2 over N2could reach 6 at 298 K, 406 kPa, and CO2 content of 50%, exceeding the Knudsen diffusion selectivity.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第5期1673-1679,共7页 CIESC Journal
基金 国家重大科技专项(2013CB733506) 广西大学科研基金项目(XGZ130963) 国家自然科学基金面上项目(21276092 21376090) 亚热带建筑科学国家重点实验室自主研究课题项目(C713001z) 广西石化资源加工及过程强化技术重点实验室项目~~
关键词 ZIF-8膜 二次生长法 气体渗透扩散行为 CO2 N2混合气 分离性能 ZIF-8 membrane secondary growth gas permeation CO2/N2 mixture gases separation performance
  • 相关文献

参考文献20

  • 1Rakitin A V, Poberovskii A V, Timofeev Y M, Makarova M V, Conway T J. Variations in the column-average dry-air mole fractions of CO2 in the vicinity of St. Petersburg[J]. Atmospheric and Oceanic Physics, 2013, 49:271-275. 被引量:1
  • 2Helle H K, Zhong M J, Konkolewicz K, Rappold T, Sugar G, David N E, Gelb J, Kotwal N, Merkle A. Colloidal crystals: three-dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible COz capture[J]. Adv. Funct. Mater, 2013, 23(37): 4719-4814. 被引量:1
  • 3Verweij H, Lin Y S, Dong J. Micro-porous silica and zeolite membranes for hydrogen purification[J]. MRS Bull. 2006, 31: 756-764. 被引量:1
  • 4Dong J H, Lin Y S, Kanezashi M. Microporous inorganic membranes for high temperature hydrogen purification[J]. J Appl. Phys., 2008, 104:121301-17. 被引量:1
  • 5Kanezashi M, O'Brien-Abraham J, Lin Y S, Suzuki K. Gas permeation through DDR-type zeolite membranes at high temperatures[J]. AIChE,L, 2008, 54:1478-1486. 被引量:1
  • 6Joerg K, Caro J. Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate[J] Eur. J. Inorg. Chem., 2007, 2007(1): 60-64. 被引量:1
  • 7Car A, Stropnik C, Peinemann K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200(1/2/3): 424-426. 被引量:1
  • 8Guo H L, Zhu G S, Hewitt I J, Qiu S L."Twin copper source" growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2[J]. J. Am. Chem. Soc.,2009, 131(5): 1646-1647. 被引量:1
  • 9Surendar R V, Carreon M A. Highly permeable zeolite imidazolate framework-8 membranes for C02/CH4 separation[J]. J. Am. Chem. Soc., 2010, 132(1): 76-78. 被引量:1
  • 10Bai J F, Leiner E, Seheer M. P2 ligand complexes as building blocks for the formation of one-dimensional polymers[J]. Angew. Chem. lnt. Ed.. 2002, 418(5): 783-786. 被引量:1

同被引文献61

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部