期刊文献+

SHARP BOUNDS FOR NEUMAN-SNDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS 被引量:3

SHARP BOUNDS FOR NEUMAN-SNDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
下载PDF
导出
摘要 In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert means of a and b, respectively. In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert means of a and b, respectively.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期797-806,共10页 数学物理学报(B辑英文版)
基金 supported by the Natural ScienceFoundation of China under Grants 61374086 and 11371125 the Natural Science Foundation of ZhejiangProvince under Grant LY13A010004
关键词 Neuman-Sandor mean quadratic mean first Seiffert mean Neuman-Sandor mean quadratic mean first Seiffert mean
  • 相关文献

参考文献21

  • 1Neuman E, Sndor J. On the Schwab-Borchardt mean. Math Pannon, 2003, 14(2): 253-266. 被引量:1
  • 2Seiffert H J. Problem 887. Nieuw Arch Wisk, 1993, 11(2): 176-176. 被引量:1
  • 3Haisto P A. A monotonicity property of ratios of symmetric homogeneous means. JIPAM J Inequal Pure Appl Math, 2002, 3(5): Article 71, 23 pages. 被引量:1
  • 4Neuman E, Sndor J. On certain means of two arguments and their extension. Int J Math Math Sci, 2003, 16:981-993. 被引量:1
  • 5Haisto P A. Optimal inequalities between Seiffert's mean and power mean. Math Inequal Appl, 2004, 7(1): 47-53. 被引量:1
  • 6Chu Y M, Wang M K, Wang G D. The optimal generalized logarithmic mean bound for Seiffert's mean. Acta Mathematica Scientia, 2012, 32B(4): 1619-1626. 被引量:1
  • 7Gao H Y, Guo J L, Li M H. Sharp bounds for the first Seiffert and logarithmic means in terms of generalized Heronian mean. Acta Mathematica Scientia, 2013, 33B(3): 568-572. 被引量:1
  • 8Neuman E. Inequalities for the Schwab-Borchardt mean and their applications. J Math Inequal, 2011, 5(4): 601-609. 被引量:1
  • 9Chu Y M, Hou S W, Shen Z H. Sharp bounds for Seiffert mean in terms of root mean square. J Inequal Appl, 2012, 2012: 11, 6 pages. 被引量:1
  • 10Chu Y M, Wang M K, Qiu S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Indian Acad Sci Math Sci, 2012, 122(1): 41-51. 被引量:1

同被引文献6

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部