期刊文献+

含橡胶隔振器振动系统动态特性研究 被引量:3

Dynamic Characteristics of Vibration System Including Rubber Isolator
下载PDF
导出
摘要 以APU隔振器为研究对象,提出采用五参数分数导数建立橡胶隔振器本构模型。推导了含橡胶隔振器振动系统的非线性动力学有限元方程式。分析了隔振器结构参数变化对传递率特性的影响。研究结果表明:文中的数值计算方法能更好地预测含橡胶隔振器振动系统的动态特性。 A nonlinear dynamics constitutive model of rubber isolator is established by making use of five-parameter fractional derivative. The finite element formulation of vibration system with rubber iso- lator is derived. The transmissibility characteristics are study by changing the structure parameters of isolator. Results show that the dynamic properties of vibration system with rubber isolator can be predic- ted by the numerical calculation methods.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第2期285-291,共7页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 橡胶隔振器 分数导数 黏弹性 有限元 动态特性 rubber isolator fractional derivative viscoelasticity finite element dynamic characteristics
  • 相关文献

参考文献15

  • 1Yu A R, Shitikova M V. Analysis of damped vibra- tions of linear viscoelastic plates with damping mod- eled with fractional derivatives [J]. Signal Process- ing, 2006,86(10) :2703-2711. 被引量:1
  • 2Pritz T. Analysis of four-parameter fractional deriva- tive model of real solid materials [J]. Journal of Sound and Vibration, 1996,195(1) : 103-115. 被引量:1
  • 3Pritz T. Five-parameter fractional derivative model for polymeric damping materials [J]. Journal of Sound and Vibration, 2003,265(5) :935-952. 被引量:1
  • 4Djamel O. Combination of a standard viscoelastic model and fractional derivate calculus to the charac- terization of polymers[J]. Mat Res Innovat, 2003,7 (1) :42-46. 被引量:1
  • 5Nicole H. Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition[J]. Signal Processing, 2003,83(1) :2345-2357. 被引量:1
  • 6Sjoberg M. Rubber isolators-measurements and modelling using fractional derivatives and friction [J].SAE Technical Paper Serials, 2000-01-3518,2000. 被引量:1
  • 7Sjoberg M, Kari L. Non-linear behavior of a rubber isolator system using fractional derivatives[J]. Vehi- cle System Dynamics, 2002,37(3):217-236. 被引量:1
  • 8Sjoberg M. Nonlinear isolator dynamics at finite de- formations: An effective hyperelastic, fractional de- rivative, generalized friction model [J]. Nonlinear Dynamics, 2003,33(3) :323-336. 被引量:1
  • 9Pu Y, Sumali H, Gailard C. Modeling of nonlinear elastoneric mounts. Part 1 : Dynamic Testing and Pa- rameter Identification[J]. SAE Technical Paper Serials, 2001-01-0042,2001. 被引量:1
  • 10Kohandel M, Sivaloganathan S, Tenti G, et al. Fre- quency dependence of complex moduli of brain tissue using a fractional Zener model[J]. Phys Med Biol, 2005,50(12) :2799-2805. 被引量:1

二级参考文献16

  • 1Pritz T. Analysis of four-parameter fractional derivative model of real solid materials[J]. Journal of Sound and Vi- bration, 1996,195 (1) : 103-115. 被引量:1
  • 2Schmidt A,Gaul L. Finite element formulation of viscoe- lastic constitutive equations using fractional time deriva- tives[J]. Nonlinear Dynamics, 2002,29 (1/2/3/4) z 37-55. 被引量:1
  • 3Kim S Y, Lee D H. Identification of fractional-derivative- model parameters of viscoelastic materials from measured FRFs[J]. Journal of Sound and Vibration, 2009,324 (3/4/ 5) : 570-586. 被引量:1
  • 4Fukunaga M,Shimizu N, Nasuno H. A nonlinear fractional derivative model of impulse motion for viscoelastic materi- als[J]. Physica Scripta, 2009,136 : 014010.1-014010. 6. 被引量:1
  • 5Yajima T, Nagahama H. Differential geometry of viscoe- lastic models with fractional-order derivatives[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43 (38) :385207.1-385207.9. 被引量:1
  • 6Rossikhin Y A,Shitikova M V. Analysis of damped vibra- tions of linear viscoelastic plates with damping modeledwith fractional derivatives[J]. Signal Processing, 2006,86 (10) : 2703-2711. 被引量:1
  • 7Heymans N. Fractional calculus description of non-linear viscoelastic behaviour of polymers[J]. Nonlinear Dynam- ics, 2004,38(1/2/3/4) : 221-231. 被引量:1
  • 8SjOberg M,Kari L. Non-linear behavior of a rubber isolator system using fractional derivatives[J]. Vehicle System Dy- namics, 2002,37(3) :217-236. 被引量:1
  • 9Sj6berg M. Nonlinear isolator dynamics at finite deforma- tions : an effective hyperelastie, fractional derivative, gener alized friction model[J]. Nonlinear Dynamics, 2003, 33 (3) :323-336. 被引量:1
  • 10Negrete N G,Vinolas J, Kari L. A simplified methodology to predict the dynamic stiffness of carbon black filled rub- ber isolators using a finite element code [J]. Journal of Sound and Vibration,2006,296(4/5)757-776. 被引量:1

共引文献10

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部