期刊文献+

基于空间网格划分的多目标进化算法 被引量:1

Multi-objective evolutionary algorithm based on space-gridding scheme
下载PDF
导出
摘要 为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。 In order to solve the multi-objective optimization problem effectively and find a set of Pareto solutions with uniform distribution and wide range, this paper proposes an evolutionary algorithm based on a space-gridding search tech-nique. The decision space is divided into grids, and a large number of dominant individuals are deleted by using the loca-tion of the grids. In the crossover operator, the information of optimal individuals for each objective function is used to increase the range of Pareto front. A new designed method based on maximum distance sorting is applied to delete the unwanted individuals in non-dominant solution sets. Numerical experiments show that the proposed algorithm is feasible and efficient.
作者 李雯 李和成
出处 《计算机工程与应用》 CSCD 2014年第8期53-56,117,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61065009) 青海省自然科学基金(No.2013-z-937Q)
关键词 多目标优化问题 进化算法 PARETO最优解 空间网格划分 multi-objective optimization problem evolutionary algorithms Pareto optimal solutions space-gridding
  • 相关文献

参考文献15

  • 1宋昕,黄磊.基于改进NSGA-Ⅱ算法的港口堆位分配问题研究[J].计算机工程与应用,2012,48(33):34-39. 被引量:3
  • 2Gu F Q, Hai L L, Kay C T.A multi-objective evolutionary algorithm using dynamic weight design method[J].Inter- national Journal of Innovative Computing Information and Control,2012,8(SB) :3677-3688. 被引量:1
  • 3Mavrotas G.Effective implementation of the e-constraint method in multi-objective mathematical programming problems[J].Applied Mathematics and Computation, 2009, 213(2) :455-465. 被引量:1
  • 4王宇平著..进化计算的理论和方法[M].北京:科学出版社,2011:233.
  • 5李密青,郑金华,罗彪.一种基于最小生成树的多目标进化算法[J].计算机研究与发展,2009,46(5):803-813. 被引量:14
  • 6Deb K, Jain H.Handing many-objective problems using an improved NSGA-Ⅱ procedure[C]//IEEE World Congress on Computational Intelligence, 2012 : 1-8. 被引量:1
  • 7Sriniva N,Deb K.Multi-objective optimization using non- dominated sorting in genetic algorithms[J].Evolutionary Computation, 1994,2 (3) : 221-248. 被引量:1
  • 8Deb K,Amrit P,Sameer A,et al.A fast and elitist multi- objective genetic algorithm: NSGA-Ⅱ[J].IEEE Transac- tions on Evolutionary Computation, 2002,6 (2) : 182-197. 被引量:1
  • 9Ziker E.Evolutionary algorithms for multiobjective opti- mization: methods and applications[D].Zurich: Swiss Federal Institute of Technology, 1999. 被引量:1
  • 10Ziker E,Laumanns M, Thiele L.SPEA-Ⅱ:improving the performance of the strength Pareto evolutionary algo- rithm[R].Zurich:Swiss Federal Institute of Technology, 2001. 被引量:1

二级参考文献26

共引文献37

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部