期刊文献+

自适应残差加权的多元素协同表示分类算法 被引量:1

Adaptive Weighted Residuals Multi-Element Collaborative Representation Classification Approach
下载PDF
导出
摘要 提出了一种残差加权的多元素协同表示算法.该算法针对SRC的单一鉴别性不足,对样本提出样本与字典的多元素分解并分别进行相应的协同表示,自适应地学习出多元素的残差权重并进行线性加权,从而提高分类的性能.实验表明:自适应残差加权的多元素协同表示分类算法,能够有效提高识别性能. An adaptive weighted residuals multi-element collaborative representation classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.
出处 《计算机系统应用》 2014年第5期152-157,共6页 Computer Systems & Applications
基金 西安市科技计划项目(CX12179(1)) 陕西省科技厅工业攻关项目(2011K06-13) 陕西省教育厅自然科学研究项目(11JK0985)
关键词 自适应残差权重 协同表示 分类算法 adaptive weighted residuals Collaborative representation SRC
  • 相关文献

参考文献15

  • 1Huang K, Aviyente S. Sparse representation for signal classification. Advances in Neural Information Processing Systems. 2006. 609-616. 被引量:1
  • 2Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: Which helps face recognition. Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE. 2011. 471-478. 被引量:1
  • 3Rigamonti R, Brown MA, Lepetit V. Are sparse representations really relevant for image classification? Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011. 1545-1552. 被引量:1
  • 4Shi Q, Eriksson A, van den Hengel A, et al. Is face recognition really a compressive sensing problem? Computer Vision and Pattern Recognition(CVPR), 2011 IEEE Conference on. IEEE. 2011. :553-560. 被引量:1
  • 5Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010, 32(11 ): 2106-2112. 被引量:1
  • 6Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proc. of the IEEE, 2010, 98(6): 1031-1044. 被引量:1
  • 7Yang AY, Sastry SS, Ganesh A, et al. Fast 1-minimization algorithms and an application in robust face recognition: A review. Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE. 2010. 1849-1852. 被引量:1
  • 8Tropp JA, Wright SJ. Computational methods for sparse solution of linear inverse problems. Proc. of the IEEE, 2010, 98(6): 948-958. 被引量:1
  • 9Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. 2010. 3501-3508. 被引量:1
  • 10Wright J, Yang AY, Ganesh A, et al. Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Trans. on, 2009, 31 (2): 210-227. 被引量:1

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部