期刊文献+

无界区域瞬时涡流问题有限元-边界元耦合的A-φ法的误差分析

ERROR ANALYSIS FOR A FEM-BEM-COUPLING A-Φ METHOD OF A TRANSIENT EDDY CURRENT PROBLEM IN UNBOUNDED DOMAIN
原文传递
导出
摘要 针对三维无界区域带有凸多边形导体的瞬时涡流问题,本文提出了一种基于势场的有限元-边界元耦合的方法,从理论上讨论了其能量模误差估计.虽然电场被分解为电矢势A与磁标势φ的梯度之和后增加了方程与未知量的个数,但这种分解可以很好地处理不同介质间的间断.与传统的A-φ法不同,本文讨论了一种全离散的A-φ解耦形式,这样不仅可以避免传统格式所产生的鞍点问题的求解,又可以减少计算量. This paper is devoted to the study of a FEM-BEM-coupling A-φ method to solve a transient eddy current problem in a 3D unbounded domain with a bounded convex conducting polyhedron. In order to utilize nodal finite elements in space discretization, we decompose the electric field into summation of a vector electric potential and the gradient of a scalar magnetic potential. Although introducing the potentials increases the number of unknowns and equations, these apparent complications are justified by a better way of dealing with pos- sible discontinuities of mediums. As distinguished from the traditional fully-discrete coupled method with both vector and scalar potentials solved in one equation system at every time- step, our decoupled method is to solve them at two separate equation systems, which avoids solving a saddle-point equation system and leads to an important saving in computational effort. The energy-norm error estimate of our method is obtained.
作者 康彤 陈涛
出处 《计算数学》 CSCD 北大核心 2014年第2期163-178,共16页 Mathematica Numerica Sinica
基金 国家自然科学基金(批准号91130015)资助
关键词 瞬时涡流问题 无界区域 有限元-边界元耦合 A-φ解耦方法 误差分析 Transient eddy current problem Unbounded domain FEM-BEM-coupling A-φ decoupled method Error estimate
  • 相关文献

参考文献18

  • 1Acevedo Rand Meddahi S. An E-based mixed-FEM and BEM coupling for a time-dependent eddy current problem[J]. IMA Journal of Numerical Analysis, doi:1O.1093/imanum/drp049(201O). 被引量:1
  • 2Acevedo R, Meddahi S and Rodriguez R. An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comp., 2009, 268: 1929-1949. 被引量:1
  • 3Agarwal R. Difference equations and inequalities. Marcel Dekker, New York, 1992. 被引量:1
  • 4Albanese Rand Rubinacci G. Formulation of the eddy-current problem[J]. lEE Proceedings, 1990, 137: 16-22. 被引量:1
  • 5Bermudez A, Rodriguez B L, Rodriguez R and Salgado P. Numerical solution of transient eddy current problems with input current intensities as boundary data. be published. 被引量:1
  • 6Biro a and Preis K. On the use of the magnetic vector potiential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Trans. Magn., 1989, 25: 3145-3159. 被引量:1
  • 7Buffa A and Ciarlet P. On trace for functional spaces related to Maxwell's equations. Part I: An integration by parts formula in Lipschitz polyhedra[J]. Math. Methods Appl. Sci., 2001, 24: 9-30. 被引量:1
  • 8Buffa A, Costabel M, and Sheen D. On traces for H(curl, r2) in Lipschitz domains[J]. J. Math. Anal. Appl., 2002, 2: 845-867. 被引量:1
  • 9Ciarlet P. The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. 被引量:1
  • 10Ciarlet P and Zou J. Fully discrete finite element approaches for time-dependent Maxwell's equations[J]. Numerische Mathematik, 1999, 82: 193-219. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部