期刊文献+

WSNs的改进PF算法对移动机器人的定位跟踪 被引量:1

Improved PF algorithm for WSNs for mobile robot locating and tracking
下载PDF
导出
摘要 针对粒子滤波(PF)算法由于粒子的数量和质量的影响、重要性密度函数不能直接求得、重采样过程中噪声无法优化而使粒子退化严重以致跟踪精度不高的问题,提出了遗传方差自适应(GVA)PF(GVAPF)算法。首先利用遗传算法从大量粒子中挑选初始粒子,改善初始粒子的质量。然后对重采样过程的噪声采用方差自适应进行实时修改,使得重要性密度函数更加逼近状态的真实分布。仿真结果表明:改进的算法明显优于标准PF算法。 Aiming at problem of low tracking precision of particle filtering (PF) algorithm caused by quantity and quality effect of particle, and the importance density function can not be obtained directly and noise can not be optimized in resampling process,which give rise to particle degeneration, propose a genetic-variance adaptive PF (GVAPF) algorithm. Firstly, use genetic algorithm to select initial particles from large numbers of particles in order to improve quality of initial particles. And then, modify noise in resampling process by variance adaptive (YA) technology in real-time, and make the importance density function gets closer to true distribution of the state. Simulation results show that the improved algorithm is superior to the standard PF algorithm.
出处 《传感器与微系统》 CSCD 北大核心 2014年第5期48-51,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61163051) 云南省应用基础研究基金资助项目(2009ZC050M)
关键词 遗传方差自适应粒子滤波 机动目标跟踪 重要性密度函数 重采样 genetic-variance adaptive particle filtering (GVAPF) maneuvering target tracking importancedensity function resampling
  • 相关文献

参考文献13

二级参考文献63

共引文献127

同被引文献14

  • 1GUTMANN J-S, FONG P, CHIU L, et al. Challenges of designing a low-cost indoor localization system using active beacons [ C]//Te- PRA 2013: Proceedings of the 2013 International Conference on Technologies for Practical Robot Applications. Piscataway: IEEE, 2013:1-6. 被引量:1
  • 2LIU T, ZHANG W, GU J, et al. A laser radar based mobile robct localization method [ C]// ROBIO 2013: Proceedings of the 2013 International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2013:2511-2514. 被引量:1
  • 3ALVES P, COSTELHA H, NEVES C. Localization and navigation of a mobile robot in an office-like environment [ C]// ARS 2013: Proceedings of the 2013 13th International Conference on Autono- mous Robot Systems. Piscataway: IEEE, 2013:1 -6. 被引量:1
  • 4HSU C-C, KUO C-J, KAO W-C. Improved Monte Carlo localiza- tion with robust orientation estimation for mobile robots [ C]//SMC 2013: Proceedings of the 2013 IEEE International Conference on Systems, Mart, and Cybernetics. Piscataway: IEEE, 2013:3651 - 3656. 被引量:1
  • 5ZHANG H, CHEN J, ZHANG K. Reliable and efficient RFID- based localization for mobile robot [ C]// ROSE 2013: Proceed- ings of the 2013 IEEE International Symposium on Robotic and Sensors Environments. Piscataway: IEEE, 2013: 184- 189. 被引量:1
  • 6ZHOU N, ZHAO X, TAN M. RSSI-based mobile robot navigation in grid-pattern wireless sensor network [ C]//CAC 2013: Proceed- ings of the 2013 National Conference on Chinese Automation Con- gress. Piscataway: IEEE, 2013:497-501. 被引量:1
  • 7LEE H J, KIM M S, LEE M C. Technique to correct the localiza- tion error of the mobile robot positioning system using an RFID [ C]// SICE 2007: Proceedings of the 2007 Annual Conference on Instrumentation and Control Engineering. Piscataway: IEEE, 2007: 1506-1511. 被引量:1
  • 8王殿君,兰云峰,任福君,赵丽杰,姜永成.基于有源RFID的室内移动机器人定位系统[J].清华大学学报(自然科学版),2010,50(5):673-676. 被引量:17
  • 9张利,潘承毅,刘征宇,徐娟,黄业伟.差动驱动机器人的一种航迹推算定位方法[J].合肥工业大学学报(自然科学版),2010,33(11):1605-1608. 被引量:9
  • 10曾健平,王保同,谢海情.自主移动机器人定位系统中Kalman滤波算法改进[J].计算机应用研究,2011,28(5):1710-1712. 被引量:3

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部