期刊文献+

基于基模分析的高光谱混合像元分解

Hyperspectral Imager unmixing based on archetypal analysis
下载PDF
导出
摘要 基模分析被广泛地运用于机器学习与数据挖掘之中,其核心思想是通过寻找数据凸体的角点,这些角点通常是数据的主要成分。同时通过分配比例系数给这些角点,这样就能重构原始数据。本文据此出发,利用基模分析进行高光谱盲信号分离,分别分离出端元矩阵与各种物质的比例系数。在梯度下降算法的框架下,我们采用了一种快速初始化策略,利用基模分析的扩展模式-核方法进行端元与比例系数的迭代。通过对真实高光谱遥感影像大量实验发现,此方法简单易行,且精度较高。 The archetypal analysis is widely used in machine learning and data mining, and its core is to find these comers of data convex, and these comers are usually the main components of datas. If we update the coefficient matrix of datas,and the archetypal analysis become the blind signal separation algorithm.In the paper,we use the archetypal analysis as blind signal separation tool,and separate the original hyperspectral image datas into endmembers and the proportion coefficients matrixes of various substances. In the framework of gradient descent algorithm,we use a fast initialization strategy-FUR_THESTSUM algorithm,and use the extended model of archetypal analysis-kernel algorithm to update the two matrixes.A great numbers of experiments on real hyperspectral image show that archetypal analysis is an efficient blind signal separation,and the algorithm is have high accuracy.
作者 田树涛
出处 《中国建材科技》 2014年第2期72-76,共5页 China Building Materials Science & Technology
关键词 高光谱混合像元分解 盲信号分离 梯度下降算法 基模分析 hyperspectral image mixed pixels unmixing blind signal separation gradient descent algorithm archetypal analysis
  • 相关文献

参考文献25

  • 1N.Keshava and J.Mustard, Spectral unmixing, IEEE Signal Processing Magazine,vol. 19,no.1 ,pp.44 - 57,Jan 2002. 被引量:1
  • 2J.Bioucas-Dias,A.Plaza,N.Dobigeon,M.Parente,Q. Du,P.Gader,and J.Chanussot,Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches,IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,vol.5,no.2,pp.354- 379,April 2012. 被引量:1
  • 3M.-D.Iordache, J. Bioucas-Dias,and A. Plaza,Sparse unrnixing of hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing,vol.49,no.6,pp.2014- 2039,june 2011. 被引量:1
  • 4A. Halimi,Y.Altmann,N.D obigeo n,and J.Toumeret,Nonlinear unmixing of hyperspectral images using a generalized bilinear model,IEEE Transactions on Geoscience and Remote Sensing,vol,49,no.11,pp.4153 - 4162,nov.2011. 被引量:1
  • 5Y.Altmann,N. Dobigeon,S.McLaughlin,and J.Toumeret,Unsupervised nonlinear unmixing of hyperspectral images using gaussian processes, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),march 2012,pp.1249 - 1252. 被引量:1
  • 6J.M.P.Nascimento andJ. M.B.Dias,Vertex component analysis:a fast algorithm to unmix hyperspectral data.IEE1c Transactions on Geoscience and Remote Sensing,vol.43,no.4: pp.89B - 910,2005. 被引量:1
  • 7M.E.Winter,N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data.Proc. SPIE Conf. Imaging Spectrometry, vol.3753,1999. 被引量:1
  • 8D.Heinz and Chein-I-Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,IEEE Transactions on Geoscience and Remote Sensing,vol.39, no.3, pp.529- 545,March 2001. 被引量:1
  • 9C.Theys,N. Dobigeon,J.Y.Tourneret,H. Lanteri," Linear unmixing of hyperspectral images using a scaled gradient method," Statistical Signal Processing,2009.SSP '09.IEEE/SP 15th Workshop on,pp.729-732,Aug.31 2009- Sept.3 2009. 被引量:1
  • 10J.Bayliss,J.A. Gualtieri,and R.F.Cromp,Analyzing hyperspectral data with independent component analysis,in Proc.SPIE AIPR Workshop,vol.3240.SPIE,pp.133 - 143,1997. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部