摘要
考虑一类稀疏过程下索赔相依的两险种风险模型:U(t)=u+ct-∑i=1N2(t)X_i-∑i=1N2(t)Y_(i),其中{N_1(t),t≥0}、{N_2(t),t≥0}分别表示两个险种的索赔次数,它们按下述方式相关:N_1(t)N_(11)(t)+N_(12)(t),N_2(t)=N_(22)(t)+N'_(12)(t),{N'_(12)(t),t≥0}是{N_(12)(t),t≥0}的一个p-稀疏.考虑下列两种情形:(Ⅰ){N_(11)(t),t≥0}、{N_(12)(t),t≥0}、{N_(22)(t),t≥0}均为Poisson过程;(Ⅱ){N_(11)(t),t≥0}、{N_(22)(t),t≥0}为Poisson过程,{N_(12)(t),t≥0}为Erlang(2)过程.在上述两种情形下,当两险种的单次索赔额均服从指数分布时,通过建立并求解生存概率所满足的微分方程,给出其破产概率的表达式.
Abstract: The paper considers a class of bivariate risk model with correlated aggregateclaims under sparse process as follows:U(t)=u+ct-N1(t)∑i=1 Xi-N2(t)∑i Yi,where {N1(t),t〉0} is the claim number processes for class i,i={N1(t),t〉0}、{N2(t),t〉0} are correlatedin the way that N1(t)=N11(t)+N12(t),N2(t)=N22(t)+N'12(t),where {N'12(t),t〉0} is a p- sparse process of {N12(t),t 〉_ 0}. We derive the exact expression of ruin probability when claims follow the exponential distributions in the following two cases:(I){N11(t),t〉0}、{N12(t),t〉0}、{N22(t),t〉0}are all Poisson processes;(II){N11(t),t〉0}、{N22(t),t〉0} are both Poisson processes, and {N12(t),t〉0} is an Erlang(2) process.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第8期16-24,共9页
Mathematics in Practice and Theory
基金
冶金工业过程系统科学湖北省重点实验室(武汉科技大学)开放基金(Y201116
Y201117)
国家自然科学基金(11201356)