期刊文献+

基于多项式商之和的伪随机序列的线性复杂度

Linear Complexity of Pseudorandom Sequences Based on Summation of Polynomial Quotients
原文传递
导出
摘要 探讨t(t≥1)个不同的多项式商之和定义的序列H(u)≡∑it=1ai uwi-uwip p(modp)的线性复杂度.一方面,给出了作为p元序列的(H(u))u≥0的线性复杂度准确值;另一方面,结合有限域Zp上的d阶乘法特征χ,定义d元序列(su)u≥0:0≤su<d,exp(2πisu/d)=χ(H(u)),χ(0)=1证明了当d为素数且dmodp2为本原元时,序列(su)u≥0具有"高"的线性复杂度.同时,应用指数和估计,给出了(su)u≥0(此时d可以为合数)的线性复杂度轮廓的一个下界. We discuss the linear complexity of the sequences H(u)≡t ∑ i=t ai u^wi - u^wip/ p (modp)defined by the summation of t(t≥1)different polynomial quotients.On one hand,we get the exact values of linear complexity of the pary sequences(H(u))u≥0.On the other hand,combining with the multiplicative characterχof order dof the finite field Zp,we define the d-ary sequences(su)u≥0: 0≤su d,exp(2πisu)d=χ(H(u)),χ(0)=1 If dis prime and dis a primitive element modulo p2,we prove that(su)u≥0has"high"linear complexity.Moreover,using certain exponential sum estimate,we give a lower bound on the linear complexity profile of(su)u≥0for any prime or composite d.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2014年第2期167-172,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(61373140 61170246) 福建省教育厅资助项目(JK2013044 JA12291 JB12179) 莆田学院教改项目(JG2012020)
关键词 序列密码 多项式商 费马商 伪随机序列 线性复杂度 stream cipher polynomial quotients Fermat quotients pseudorandom sequences linear complexity
  • 相关文献

参考文献1

二级参考文献12

  • 1ERNVALL R,METSNKYL T. On the p-Divisibility of Fer- mat Quotients[J]. Mathematics of Computation,1997,66(219): 1353-1365. 被引量:1
  • 2CHEN Zhixiong,OSTAFE A,WINTERHOF A. Structure of Pseudorandom Numbers Derived from Fermat Quotients [J]. Lecture Notes in Computer Science,2010,6087/2010: 73-85. 被引量:1
  • 3GOMEZ D,WINTERHOF A. Multiplicative Character Sums of Fermat Quotients and Pseudorandom Sequences[J]. Peri- odica Mathematica Hungarica,2011 (to appear). 被引量:1
  • 4OSTAFE A,SHPARLINSKI I E. Pseudorandomness and Dy- namics of Fermat Quotients [J]. SIAM Journal on Discrete Mathematics,2011,25(1): 50-71. 被引量:1
  • 5SHPARLINSKI I E. Character Sums with Fermat Quotients[J]. Quarterly Journal of Mathematics,2011,62(4): 1031-1043. 被引量:1
  • 6GRANVILLE A. Some Conjectures Related to Fermat's Last Theorem[C] // Proceedings of the First Conference of the Ca- nadian Number Theory Association: 1990. New York,1990: 177-192. 被引量:1
  • 7NIEDERREITER H. Linear Complexity and Related Complexity Measures for Sequences[J]. Lecture Notes in Computer Sci- ence,2003,2904/2003: 161-245. 被引量:1
  • 8WINTERHOF A. Linear Complexity and Related Complexity Measures[A]. WOUNGANG I,MISRA S,MISRA S C. Se- lected Topics in Information and Coding Theory,World Sci- entic[C]. Singapore,2010: 3-40. 被引量:1
  • 9MEIDL W. How Many Bits Have to Be Changed to De- crease the Linear Complexity[J]. Designs,Codes and Cryp- tography,2004,33(2): 109-122. 被引量:1
  • 10SHANKS D. Solved and Unsolved Problems in Number Theory[M]. Chelsea Publishing Company,New York,Sec- ond Edition,1978. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部