期刊文献+

一种改进型多目标粒子群优化算法MOPSO-Ⅱ 被引量:7

An Improved Multi-Objective Particle Swarm Optimization Algorithm MOPSO-Ⅱ
原文传递
导出
摘要 提出了一种改进型多目标粒子群优化算法(MOPSO-Ⅱ).该算法为粒子群中每个粒子增加一个"扰动向量",以利于粒子跳出局部最优并为粒子的全局最优位置赋予了时限的属性,可防止过于频繁地更新全局最优位置,有利于增强粒子搜索的持效性.该算法改进了粒子越界的处理方法,最大程度上保持粒子优秀的搜索方向.通过典型的多目标测试函数ZDT对该算法进行测试,实验结果表明,带ε-支配的MOPSO-Ⅱ算法在解群的分布性方面要优于使用了拥挤距离机制MOPSO-Ⅱ算法和NSGA2算法,对比实验还表明MOPSO-Ⅱ算法在收敛性方面要优于NSGA2.因此,MOPSO-Ⅱ在求解多目标优化问题上有一定优势,是一种有前途的算法. This paper proposed an improved multi-objective particle swarm optimization algorithm(MOPSO-Ⅱfor short).In this algorithm a disturbance vector was added to each particle to enhance the ability of escaping from local optima.Secondly,aproperty of limited time was assigned to each global best particle to keep effective sustainable search.Finally,an improved boundary treatment method was proposed to preserve the ercellent search direction.Some experiments on a set of classical benchmark functions were conducted in the paper.Experimental results show that MOPSO-Ⅱ usingε-dominance mechanism performed better than those using crowding distance method of MOPSO-Ⅱand NSGA2on the distribution of solutions.It also shows that the proposed algorithm has better convergence than NSGA2.Consequently,MOPSO-Ⅱhas some advantages in the field of solving multi-objective optimization problems and it will be a promising algorithm.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2014年第2期144-150,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(61165004 61305079) 江西省自然科学基金(20114BAB201025) 福建省自然科学基金(2012J01248) 江西省教育厅科技项目(GJJ12307 GJJ13320) 福建省杰出青年培育计划(福建省教育厅[2011]29号) 河北省教育厅科研项目(QN20131053) 河北省科技计划项目(13210331) 河北省青年拔尖人才支持计划(冀字[2013]17号)
关键词 粒子群优化 多目标优化 扰动向量 particle swarm optimization multi-objective optimization disturbance vector
  • 相关文献

参考文献13

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[DB/OL].[2013-01-09].kttp://rwww.cs.tufts,edu/comp 1150GA/homeworks/hw/_ readingQ% 201995%20particle% 20swarming.pdf. 被引量:1
  • 2Hu X,Eberhart R.Multiobjective Optimization UsingDynamic Neighborhood Particle Swarm Optimization[DB/OL].[2013-02-09].http-J/www.swarmintel-ligence.org/papers/CEC2002Multiobjective.pdf. 被引量:1
  • 3张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:224
  • 4Coello CCA,Pulido G T,Lechunga M S.Handlingmultiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279. 被引量:1
  • 5Salazar-Lechuga M,Rowe J E.Particle Swarm Opti-mization and Fitness Sharing to Solve Multi-ObjectiveOptimization Problems [DB/OL].[2013-02-15].http://citeseerx.ist.psu.edu/viewdoc/download? doi= 10.1.1.62.16 51 & rep = re pi type = pdf. 被引量:1
  • 6Deb K,Mohan M,S Mishra.Evoluating the e-domi-nation based multi-objective evolutionary algorithm fora quick computation of pareto-optimal solutions [J].Evolutionary Computation,2005,13(4):501-525. 被引量:1
  • 7Deb K,Agrawal S,Pratab A,et al.A Fast ElitistNon-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization[K].Indian:Indian Institute ofTechnology,2000. 被引量:1
  • 8林川..粒子群优化与差分进化算法研究及其应用[D].西南交通大学,2009:
  • 9Xu S H,Rahmat-Samii Y.Boundary conditions in par-ticle swarm optimization revisited[J].IEEE Trans onAntennas and Propagation,2007,55(3):760-765. 被引量:1
  • 10ChenWH,Zhang J,Lin Y,et al.Particle swarm op-timization with an aging leader and challengers [J].IEEE Trans on Evolutionary Computation,2012,2(17):241-258. 被引量:1

二级参考文献15

  • 1C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308 被引量:1
  • 2J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985 被引量:1
  • 3D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998 被引量:1
  • 4R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43 被引量:1
  • 5J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995 被引量:1
  • 6K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294 被引量:1
  • 7K E Parsopoulos,M N Vrahatis.Particle swarm optimization method for constrained optimization problems.Euro-Int'l Symp on Computational Intelligence 2002,Slovakia,2002 被引量:1
  • 8R C Eberhart,X Hu.Human tremor analyis using particle swarm optimization.IEEE Congress on evolutionary computation (CEC 1999),Washington,D C,1999 被引量:1
  • 9Y Shiand,R Eberhart.A modified particle swarm optimizer.IEEE Int'l Conf on Evolutionary Computation,Anchorage,Alaska,1998 被引量:1
  • 10H Yoshida,K Kawata,Y Fukuyama,et al.A particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Trans on Power Systems,2000,15(4):1232~1239 被引量:1

共引文献223

同被引文献80

引证文献7

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部