期刊文献+

BP神经网络和支持向量机在积温插值中的应用 被引量:5

Application of BP neural network and support vector machine to the accumulated temperature interpolation
原文传递
导出
摘要 积温插值是分布式积温获取的重要途径。为了提高积温插值的精度,应用BP(Back Propagation Learning Algorithm)神经网络模型和支持向量机(Support Vector Machine,SVM)模型建立甘肃省及周边地区的积温插值模型。结果显示:1)从积温插值的空间分布来看,SVM模型比BP神经网络模型能够体现出更多的细节;2)SVM模型的插值精度总体上显著高于BP神经网络模型;3)在平均相对误差(MRE)最大的西区,相比BP神经网络模型的7.19%,SVM模型将误差降低到了5.47%;4)东区两种模型的MRE最小,BP神经网络模型为2.97%,SVM模型为2.03%;5)与分区建模前相比,分区后的插值精度有所提高,BP神经网络模型将MRE降低了0.04%,SVM模型降低了0.11%。 In order to improve the rainfall interpolation accuracy in Gansu province,the precipitation interpolation models were built using two artificial intelligence techniques: Artificial neural network about Back Propagation Learning Algorithm and Support Vector Machine( SVM) model. The preliminary results were as follows:( 1) From the spatial distribution of accumulated temperature perspective,SVM model can reflect more details.( 2) SVM model has higher interpolation accuracy than BP neural network model.( 3) In the west district which has the largest MRE,compared to 7. 19% of the BP neural network model,the SVM model is reduced to 5.47%.( 4) The east district has the smallest MRE,with 2. 97% of the BP neural network model and 2. 03% of the SVM model.( 5) Modeling separated could improve the interpolation accuracy. But the reduction of two models was different,the BP neural network model reduced MRE by 5. 08%,while the SVM mode reduced by0. 66%. It exhibits that the SVM model is more stable.
出处 《干旱区资源与环境》 CSSCI CSCD 北大核心 2014年第5期158-165,共8页 Journal of Arid Land Resources and Environment
基金 国家自然科学基金"中国草地分类系统的比较分析与整合研究(31160475)" "基于近60年来高密度气象资料的前期降水和泥石流发生概率关系分析(40971016)"资助
关键词 积温 插值 BP神经网络 支持向量机 accumulated temperature interpolation BP neural network support vector machine
  • 相关文献

参考文献37

二级参考文献341

共引文献819

同被引文献44

  • 1李泰儒,彭晓春,郑国栋,徐林春.反距离加权法流场矢量插值研究[J].华北水利水电学院学报,2009,30(2):12-14. 被引量:10
  • 2白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 3严勇,黄席樾,刘爱君.Kalman滤波在运动图像背景提取及更新中的应用[J].自动化与仪器仪表,2006(2):28-30. 被引量:13
  • 4Zhao J, Tow J, Katupitiya J. On-tree fruit recognition using texture properties and color data [ C]//Proe of 2005 IEEE/ RSJ international conference on intelligent robots and systems. [ s. 1. ]: [ s. n. ] ,2005:263-268. 被引量:1
  • 5Yuan Feiniu. A fast accumulative motion orientation model based on integral image for video smoke detection[ J]. Pattern Recognition Letters,2008,29(7) :925-932. 被引量:1
  • 6Mena J B, Malpica J A. Color image segmentation based on three levels of texture statistical evaluation[ J ]. Applied Math- ematics and Computation ,2005,161 ( 1 ) : 1 - 17. 被引量:1
  • 7Chen Thou- Ho, Yin Yen- Hui, Huang Shifeng, et al. The smoke detection for early fire-alarming system base on video processing[ C]//Proceeding of the 2006 international confer- ence on intelligent information hiding and multimedia signal processing. [ s. 1. ] : [ s. n. ] ,2006:427-430. 被引量:1
  • 8Freeman H. On the encoding of arbitrary geometric configura- tions[ J]. IEEE Trans on Electronic Computers, 1961, EC- 10 (2) :260-268. 被引量:1
  • 9Toreyin B U, Dedeoglu Y, Cetin A E. Wavelet based real-time smoke detection in video [ C ]//Proc of 13th European signal processing conference. [ s. 1. ] : [ s. n. ] ,2005:653-695. 被引量:1
  • 10袁非牛,张永明,刘士兴,于春雨,沈诗林.基于累积量和主运动方向的视频烟雾检测方法[J].中国图象图形学报,2008,13(4):808-813. 被引量:51

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部