摘要
以“时间和空间”为切人点,按照“过程一格局一机理”的分析框架,重点运用全局和局部空间自相关指数以及灰色关联分析,探讨我国渔业经济空间差异的形成及发展过程、渔业经济的时空结构演变规律、渔业三次产业与GDP的关联效应。结果表明,首先,2002—2011年,我国渔业经济省际差异随着时间有逐步扩大的趋势;其次,总体上,省际渔业经济在全国范围内具有较好的空间结构性和空间关联性,呈现出较为显著的空间集聚模式,随着时间的推移,这种集中趋势在波动中有所减小,但减小的幅度不大;再次,从局部来看,人均渔业经济的局部空间差异发生了一些变化,2011年属于高一高和低一低关联类型的省份数量由2002年的27个减少到19个,属于高一低和低一高关联类型的省份数量增加了8个;最后,关联效应显示,我国仍有27个省份仍然依靠渔业总产值和渔业流通与服务业来实现渔业经济对GDP的拉动效应,有20个省份的渔业工业与建筑业对GDP的拉动效应相对较弱。
Taking the "time and space" as the breakthrough point, according to the analysis framework of " process - pattern - mechanism", using the global and local spatial autocorrelation index, discusses the formation and development of fishery economy space difference in China, the space-time evolution law of fishery economic, the associated effect of three times fishery industry and GDP. The results show that, firstly, 2002 - 2011, the provincial differences of China's fishery economy over time has a tendency to gradually expand; Secondly, on the whole, a provincial fishery economy nationwide has good spatial structural and spatial correlation, present a more significant spatial agglomeration mode, with the passage of time, the central tendency in less volatile, reduced but not by much. Again, from the perspective of local, some changes have taken place in the local space of fishery economy difference, belong to high - high and low - low number of province association types from 27 reduced to 19, belong to high - low and low - high association types increased the number of provinces 8; Finally, the correlation effect shows that there are 27 provinces still rely on fishery output and fishery circulation and service industry to achieve fishery economic pull effect on the GDP. There are 20 provinces whose pulling effect is relatively weak of fishery industry and construction industry to GDP.
出处
《中国渔业经济》
2014年第2期61-68,共8页
Chinese Fisheries Economics
基金
2014年上海市教委创新项目"长三角海洋经济时空动态演变格局及联动发展机理研究"(项目编号:14YS056)资助
关键词
渔业经济
时空格局
空间自相关指数
灰色关联分析
中国
fishery,economy
pattern of time and space
spatial autocorrelation index
greycorrelation analysis
China