期刊文献+

L_q规则化趋势滤波 被引量:2

Regularized Trend Filtering With L_q Penalty
原文传递
导出
摘要 含有L_q罚函数的线性回归可以进行变量选择或者系数缩减,利用Lq罚函数的这种性质,可将H-P滤波和L_1趋势滤波推广为L_q规则化趋势滤波。在内在趋势是分段线性趋势(0<q≤1)和无折点趋势(q>1)两种假设下,使用LLA方法和凸优化技术进行估计,提出修正的GCV准则进行调整参数选择。数值分析显示,在不同的假设下,本文提出的方法优于H-P滤波和L_1趋势滤波。该方法可以有效地提取时间序列的内在趋势,也可以扩展得到其他形式的解,在时间序列分析中有重要的意义。 Penalized linear regression with Lq penalty can select variables or constraint coefficients. This paper makes use of the propertie of Lq penalty to extend H-P trend filtering and L1 trend filtering to Lq trend filtering. We research on two different assumption for underlying trend, which are piecewise linear trend when 0〈q≤1 and trend without knots when q〉1. We estimate them through LLA meth- od and convex optimization and also propose a modified GCV criterion for choosing the tuning parameter. The numerical analysis shows that, under different assump- tion, our method performs better than H-P trend filtering and 1.1 trend filte- ring. This method can extract the underlying trend efficiently and can be easily modified to adapt to other assumptions, thus it is of great significance in the time series analysis.
作者 秦磊 谢邦昌
出处 《数量经济技术经济研究》 CSSCI 北大核心 2014年第5期151-160,F0003,共11页 Journal of Quantitative & Technological Economics
关键词 趋势滤波 规则化方法 Lq罚函数 Trend Filtering Regularized Method Lq Penalty
  • 相关文献

参考文献15

  • 1Hodrick R. J.,Prescott E. C.,1997,Postwar US Business Cycles : An Empirical Investigation[J],Journal of Money, Credit, and Banking, 1997, 1 .16. 被引量:1
  • 2Hoerl A. E.,Kennard R. W.,1970,Ridge Regression : Biased Estimation For NonorthogonalProblems [J],Technometrics,12 (1),55.67. 被引量:1
  • 3Tibshirani R.,1996, Regression Shrinkage And Selection Via The Lasso [J], Journal of the RoyalStatistical Society, Series B (Methodological), 267.288. 被引量:1
  • 4Huang J.,Horowitz J. L.,Ma S.,2008,Asymptotic Properties Of Bridge Estimators In SparseHigh-dimensional Regression Models [J],The Annals of Statistics, 36 (2),587.613. 被引量:1
  • 5Zou H.,Hastie T.,2005,Regularization And Variable Selection Via The Elastic Net [J],Journalof the Royal Statistical Society: Series B (Statistical Methodology) , 67 (2),301 .320. 被引量:1
  • 6Li B.,Yu Q.,2009,Robust And Sparse Bridge Regression [J],Statistics and Its Interface,2,481.491. 被引量:1
  • 7Trimbur T. M.,2006, Detrending Economic Time Series : A Bayesian Generalization Of The Ho-drick-Prescot Filter [J],Journal of Forecasting, 25 (4),247.273. 被引量:1
  • 8Zou H.,Li R,,2008,One-step Sparse Estimates In Nonconcave Penalized Likelihood Models [J],Annals of Statistics, 36 (4),1509. 被引量:1
  • 9Grant M.,Boyd S.,Ye Y.,2009,Cvx Users' Guide [R], Technical Report. 被引量:1
  • 10Sturm J. F.,1999,Using SeDuMi 1,02: A MATLAB TooLbooc For Optimization Over Symmet-ric Cones [J],Optimization Methods and Software, 11 (1-4) , 625.653. 被引量:1

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部