期刊文献+

基于小波系数稀疏性的数字调制样式识别 被引量:7

Digital Modulation Classification Using Sparsity of Wavelet Coefficient
下载PDF
导出
摘要 采用小波变换提取信号突变点信息,根据归一化前后数字调制信号小波系数稀疏性的不同特点,提出两个稀疏度参数和一种利用信号稀疏特性的类间调制样式识别算法。仿真结果表明,在低信噪比时方法比传统小波变换方法具有更高的正确识别率,算法复杂度低,且不需要码元同步。 The transient characteristics of different modulated signals are extracted by using wavelet transform. Because the coefficients of wavelet transform have different characteristics whether the signal is normalized or not,two feature parameters and a new method of inter modulation classification algorithm using the sparse features of the signal are proposed. Simulation results show that the new method has the higher classification probability in low SNR and the lower complexity than classical method,and does not need code synchronization.
出处 《杭州电子科技大学学报(自然科学版)》 2014年第2期16-19,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 电科院预研基金资助项目(41101040102)
关键词 稀疏性 调制识别 小波变换 sparsity modulation classification wavelet transform
  • 相关文献

参考文献7

  • 1谭晓衡,鄢海燕,苏萌.基于自适应小波消噪的数字调制识别优化算法[J].电子与信息学报,2011,33(2):466-469. 被引量:9
  • 2Soliman S S, Hsue S Z. Signal classification using statistical moments[ J ]. IEEE Transactions on Communications, 1992, 40(5) :908 -916. 被引量:1
  • 3Nandi A K, Azzouz E E. Algorithms for automatic modulation recognition of communication signals [ J ]. IEEE Transactions on Communications, 1998,46 (4) : 431 - 436. 被引量:1
  • 4Liang H, Ho K C. Identification of digital modulation types using the wavelet transform [ C ]. Atlantic: Military Communications Conference Proceedings, 1999:427 - 431. 被引量:1
  • 5Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform [ J ]. IEEE Processing Radar, Sonar and Navigation,2000,147 (4) : 169 - 176. 被引量:1
  • 6Chan Y T. Wavelet Basics[ M ]. Boston: Kluwer Academic Publishers, 1995 : 122 - 138. 被引量:1
  • 7石方舟..基于自主软件无线电接收机的调制识别[D].电子科技大学,2009:

二级参考文献10

  • 1潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 2Arulampalam Ganesh, Ramakona Visr, and Bouzerdoum Abdesselam, et al.. Classification of digital modulation schemes using neuron networks. Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, Aug. 22-25, 1999:649-652. 被引量:1
  • 3Xu Y Q, Ge L D, and Wang B. Digital modulation recognition method based on tree-structured neural networks Proc. of IEEE Conference on Communication Software and Network. Macao. Feb. 27-28, 2009: 708-712. 被引量:1
  • 4Ebrahimzadeh A. Automatic modulation recognition using RBFNN and efficient features in fading channels. Proc. of IEEE Conference on Networked Digital Technologies, Ostrava, Czech, July. 28-31, 2009: 485-488. 被引量:1
  • 5Park Cheol-sun, Choi 3un-ho, and Nah Sun-phil, et al.. Automatic modulation recognition of digital signals using wavelet features and SVM. Proc. of IEEE Conference on Advanced Communication Technology, Gang won-Do, Korea Feb.17-20, 2008, Vol.1: 387-390. 被引量:1
  • 6Maliatsos K, Vassaki S, and Constantinou P. Interclass and intraclass modulation recognition using the wavelet transform. Proc. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, 2007:1 5. 被引量:1
  • 7Nandi A K and Azzouz E E. Automatic identification of digital modulations. IEEE Signal Processing, 1995, 47(1): 55-69. 被引量:1
  • 8Chan Y T and Gadbois L G. Identification of the modulation type of a signal[J]. Signal Processing, 1989, 16: 149-154. 被引量:1
  • 9谭晓衡,刘娟,胡友强.一种新的低信噪比下的数字调制识别方法[J].系统工程与电子技术,2009,31(6):1520-1524. 被引量:19
  • 10田玉静,左红伟.小波消噪阈值算法优化[J].声学技术,2009,28(4):503-506. 被引量:11

共引文献8

同被引文献45

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部