期刊文献+

一种算子自定义小波薄板单元及应用

An operator custom-design wavelet-based thin plate element and its application
下载PDF
导出
摘要 提出了基于提升方案的自适应算子自定义小波有限元法,构造了一种新的算子自定义小波薄板单元。建立二维Hermite型有限元多分辨空间和两尺度关系,并由广义变分原理推导薄板结构关于尺度函数和小波函数的内积关系式,即算子。为满足算子正交性,提出基于提升方案的算子自定义小波单元的构造方法,其优点在于可根据问题的需要来设计具有期望特性的小波基。提出基于两尺度误差的自适应算子自定义小波有限元方法,通过向大于误差阈值的局域添加算子自定义小波,实现薄板结构问题的高效求解。算子自定义小波有限元法节省了重新划分网格或提高插值函数的阶次所带来的大量有限元前处理时间,并且实现薄板问题的高效解耦运算。 An adaptive operator custom-design wavelet finite element method based on the lifting scheme is proposed and a new operator custom-design wavelet thin plate element is constructed. A two-dimensional Hermite-type multiresolution finite element space and two-level relation are built. The inner production equation of scaling functions and wavelet functions of thin plate structure,also called the operator, is derived based on the general variational principle. The construction method of operator customdesign wavelet finite elements based on the lifting scheme is presented to meet the operator-orthogonal- ization. The property of the method is that the wavelets can be designed with the specified feature depending on the requirements of the problems. An adaptive operator custom-design wavelet finite element method is presented on the two-level error estimation,which can solve the thin plate problems efficiently by adding operator custom-design wavelets into the local domains higher than the threshold value. The operator custom-design wavelet finite element method saves a great deal of preprocessing time of refining the meshes or increasing the approximating order of the interpolating functions and realizes efficient decoupling computation of thin plate problems.
出处 《计算力学学报》 CAS CSCD 北大核心 2014年第2期235-240,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51205309 51105294) 工业装备结构分析国家重点实验室开放课题基金(GZ1209) 陕西省教育厅科研计划(2013JK0992)资助项目
关键词 自适应算子自定义小波有限元 薄板 算子正交性 adaptive operator custom-design wavelet finite element method thin plate operator-orthogo nalization
  • 相关文献

参考文献12

  • 1向家伟,陈雪峰,董洪波,何正嘉.薄板弯曲和振动分析的区间B样条小波有限法[J].工程力学,2007,24(2):56-61. 被引量:8
  • 2骆志高,范彬彬,郭啸栋,王祥,李举.基于小波有限元对注塑型腔内熔体的三维流动分析[J].中国机械工程,2009(10):1244-1247. 被引量:1
  • 3Diaz L A, Martin M T, Vampa V. Daubechies wavelet beam and plate finite elements[J]. Finite Elements in Analysis and Design ,2009,45(3) 200-209. 被引量:1
  • 4Zupan E,Zupan D, Sale M. The wavelet-based theory of spatial naturally curved and twisted linear beams [J]. Computational Mechanics ,2009,43(5) :675-686. 被引量:1
  • 5Chen X F, Xiang J W, Li B, et al. A study of multi- scale wavelet-based elements for adaptive finite element analysis[J]. Advances in Engineering Soft- ware ,2010,41 (2) : 196-205. 被引量:1
  • 6Vasilyev O V. Solving multi-dimensional evolution problems with localized structure using second gener- ation wavelets[J]. Int. J. Comp. Fluid Dyn. , 2003, 17(2) : 151-168. 被引量:1
  • 7Castrill6n-Candds J, Amaraunga K. Spatialiy adapted multiwavelets and sparse representation of integral equations on general geometries[J]. SIAM J. Sci. Comput. ,2003,24(5) : 1530-1566. 被引量:1
  • 8D'Heedene S, Amaratunga K, Castrill6n-Candds J. Generalized hierarchical bases: a wavelet-ritz- galerkin framework for Lagrangian FEM[J]. Eng. Comput. , 2005,22(1) : 15-37. 被引量:1
  • 9He Y M,Chen X F,Xiang J W,et al. Adaptive multi- resolution finite element method based on second gen- eration wavelets[J]. Finite Elem. Anal. Des. , 2007, 43:566-579,. 被引量:1
  • 10Wang Y M,Chen X F,He Y M,et al. New decoupled wavelet bases for multiresolution structural analysis I-J]. Structural Engineering and Mechanics, 2010, 35(2) : 195-207. 被引量:1

二级参考文献17

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部