期刊文献+

基于GPU的不确定数据流窗口连接运算

GPU based window joins over uncertain data streams
下载PDF
导出
摘要 在很多新兴应用领域、如传感器网络,实时监控系统等,产生的数据流是不断变化的、连续到达的、数据值可能不确定、且必须被快速处理。其中有些操作,如数据流的实时窗口连接运算,非常消耗时间,这对数据流处理系统的性能提出了严峻的挑战。目前,大多数算法采用软件优化来提高处理速度,但其性能提高有限。利用GPU(图形处理器)的高并行度、多线程、高带宽的并行处理能力,设计了一种软硬件结合的方法来加速处理数据流的窗口连接操作。在CUDA(统一计算架构)下,由CPU控制将内存中的数据传输至GPU存储器中,然后利用多线程进行并行处理。实验验证了提出的方法可以大幅度提高多数据流窗口连接的处理速度,可达到纯软件处理的50倍左右。 Data in some emerging applications, such as sensor networks, real-time monitoring systems, etc. , are always time- varying, uncertain, and continuously arriving. These data need to be quickly processed. However, some important operations are costly, such as the real-time window joins over data streams. The requirement is a high challenge for a data streams pro- cessing system. Currently, most of the algorithms use software optimization to accelerate the processing speed, yet the results are unsatisfactory. GPU (graphic processing unit) has a high processing performance as it uses multi-thread and high-band- width to process data in parallel. This paper presented a co-processing method with hardware and software to accelerate the window join operation over data streams. In CUDA ( compute unified device architecture) architecture, CPU ( central proces- sing unit) transfers data to memory of GPU to be processed in parallel. Experiment results show that this method can greatly improve the processing speed with about 50 times faster than software implementation.
出处 《计算机应用研究》 CSCD 北大核心 2014年第5期1428-1432,共5页 Application Research of Computers
基金 浙江省自然科学基金资助项目(LY13F020040) 浙江省"信息与通信工程"重中之重学科开发基金 宁波市自然科学基金资助项目(2012A610065)
关键词 图形处理器 统一计算架构 不确定数据流 窗口连接操作 graphic processing unit (GPU) compute unified device architecture (CUDA) uncertain data streams windowjoins processing
  • 相关文献

参考文献23

  • 1AGGARWAL C,PHILIP S.A survey of uncertain data algorithms and applications[J].Knowledge and Data Engineering,2009,21(5):609-623. 被引量:1
  • 2BUCK I.GPU Computing:programming a massively parallel processor[C]//Proc of International Symposium on Code Generation and Optimization.San Jose:IEEE Press,2007:118-135. 被引量:1
  • 3PHARR M,FERNANDO R.Gpu gems 2:programming techniques for high-performance graphic sand general-purpose computation[M].Boston:Addison-Wesley Press,2005. 被引量:1
  • 4ROBLER F,TEJADA E,FANGMEIER T.GPU-based multi-volume rendering for the visualization of functional brain images[C]//Proc of SimVis.Magdeburg:SCS Press,2006:305-318. 被引量:1
  • 5RYOO S,RODRIGUES C I.Optimization principles and application performance evaluation of a multithreaded GPU using CUDA[C]//Proc of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.New York:ACM Press,2008:73-82. 被引量:1
  • 6GOLAB L,TAMER M.Processing sliding window multi-joins in continuous queries over data streams[C]//Proc of the 29th on Very Large Data Bases Conference.Berlin:VLDB Endowment,2003:500-511. 被引量:1
  • 7DAS A,GEHRKE J,RIEDEWALD M.Approximate join processing over data streams[C]//Proc of SIGMOD Conference on Management of Data.San Diego:ACM Press,2003:40-51. 被引量:1
  • 8JAYRAM T S,McGREGOR A,MUTHUKRISHNAN S.Estimating statistical aggregates on probabilistic data streams[C]//Proc of the 26th ACM Symposium on Principles of Database Systems.New York:ACM Press,2007:243-252. 被引量:1
  • 9YEH M Y,WU K L,YU P S.PROUD:a probabilistic approach to processing similarity queries over uncertain data streams[C]//Proc of the 12th International Conference on Extending Database Technology.New York:ACM Press,2009:684-695. 被引量:1
  • 10QIAN Jiang-bo,LI You-ming,WANG Yong-li,et al.An embedded co-processor for accelerating window joins over uncertain data streams[J].Microprocessors and Microsystems-Embedded Hardware Design,2012,36(6):489-504. 被引量:1

二级参考文献36

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3彭宏,刘洋,邓维维,郑启伦.股票数据流的相关性计算方法[J].华南理工大学学报(自然科学版),2006,34(1):86-89. 被引量:9
  • 4曹锋,周傲英.基于图形处理器的数据流快速聚类[J].软件学报,2007,18(2):291-302. 被引量:24
  • 5BABCOCK B, BABU S, DATAR M, et al. Models and issues in data stream systems[ C]//PODS 2002: Proceedings of 21st ACM Symposiurm on Principles of Database Systems. New York: ACM, 2002:1 - 16. 被引量:1
  • 6BABCOCK B, BABU S, DATAR M, et al. Operator scheduling in data stream systems[ J]. The VLDB Journal, 2004, 12(13) : 333 - 353. 被引量:1
  • 7ZHUYUN - YUE, SHASHA D. StatStream : Statistical monitoring of thousands of data streams in real time[ C]// Proceedings of the 28th VLDB Conference. Hong Kong: VLDB Endowment, 21302:358 -369. 被引量:1
  • 8GOLAB L, GARG S, TAMEROZSU M. On indexing sliding windows over online data streams [ C]// EDBT 2004, LNCS 2992. Berlin: Springer-Verlag, 2004:712-729. 被引量:1
  • 9GOVINDARAJU N K, RAGHUVANSHI N, MANOCHA D. Fast and approximate stream mining of quantiles and frequencies using graphics processors[ C]//Proceedings of ACM SIGMOD 2005. New York: ACM, 2005:611-622. 被引量:1
  • 10Nvidia. NVIDIA CUDA programming guide[ EB/OL]. (2008 - 06) [21308- 06 -07]. http://developer, download, nvidia, com/compute,/ cuda/2_0/NVIDIA_ CUDA_Programming_Guide_2.0. pdf. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部