期刊文献+

基于双层贝叶斯网增强学习机制的网络认知算法 被引量:1

Network cognitive algorithm based on double-layer Bayesian network enhanced learning
下载PDF
导出
摘要 为提高网络认知的准确度,采用双层贝叶斯网络模型对网络参数进行层次化描述;采用强化学习推理算法对模型的条件概率表进行分级和学习,删除冗余信息,更准确地反映网络参数间的依赖关系,保证网络认知算法的准确度。经仿真分析,证明算法能够更好地描述网络参数的依赖信息,具有较高的推理准确度。 In order to effectively improve the accuracy of cogntive network, this paper used a double-layer Bayesian networks model to describe the relations among different variables through a certain hierarchy. Thus, inference would become more accu- rate. It used reinforcement learning algorithm to learn and classify conditional probability table in the process of inference of these variables. This way could improve the inference accuracy and deleted redundant information, and it could more accurately reflect the dependent relationships among network parameters, guaranteed more conducive to precise inference. The simulation analysis proves the effectiveness of the algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2014年第5期1320-1323,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2011AA01A109)
关键词 认知网络 贝叶斯网络 分层模型 增强学习 cognitive network Bayesian network double-layer reinforcement learning
  • 相关文献

参考文献16

  • 1PEREZ-ROMERO J,DOYLE L,VURAN M C.Applications of cognitive radio networks[J].IEEE Vehicular Technology Magazine,2012,6(4):13-18. 被引量:1
  • 2LIU Juan,CHEN Wei,CAO Zhi-gang,et al.Cooperative beamforming for cognitive radio networks:a cross-layer design[J].IEEE Trans on Communications,2012,60(5):1420-1431. 被引量:1
  • 3邵飞,汪李峰,伍春.基于认知层的认知网络结构及其认知方法[J].北京工业大学学报,2009,35(9):1181-1187. 被引量:7
  • 4CLARK D,BRADEN R,WROCLAWSKI J,et al.New ARCH:future generation Internet architecture,2004-235[M].Cambridge:MIT Computer Science & AI Lab,2004. 被引量:1
  • 5GUY P,HARRY P.Specialissue:QoS,control and security in next generation networks[J].Telecommunication Systems,2008,4(1):3-16. 被引量:1
  • 6LUO Hong,TAO Hui-xiang.Data fusion with desired reliability in wireless sensor networks[J].IEEE Trans on Parallel and Distributed Systems,2011,22(3):501-512. 被引量:1
  • 7JAVADI F,JAMALIPOUR A.A multi-path cognitive resource management mechanism for QoS provisioning in wireless mesh networks[J].Wireless Network,2011,17(1):277-290. 被引量:1
  • 8SONG Heng-jie,MIAO Chun-yan.Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series[J].IEEE Trans on Fuzzy Systems,2010,18(2):1204-1235. 被引量:1
  • 9AZMAN A W,BIGDELI A,MOHD-MUSTAFAH Y,et al.A Bayesian network-based framework with constraint satisfaction problem (CSP) formulations for FPGA system design[C]//Proc of the 21st International Conference on Application-specific Systems Architectures and Processors.2010:81-88. 被引量:1
  • 10YANG Shu-lin,CHANG Kuo-chu.Comparison of score metrics for Bayesian network learning[J].IEEE Trans on SMC:Part A,2002,32(3):419-428. 被引量:1

共引文献6

同被引文献21

  • 1Akaike H. Information theory and an extension of the maximum likelihood principle[C] //Proc of Selected Papers of Hirotugu Akaike. New York:Springer, 1998:199-213. 被引量:1
  • 2Mallows C L. Some comments on CP[J] . Technometrics, 1973, 15(4):661-675. 被引量:1
  • 3Schwarz G. Estimating the dimension of a model[J] . The Annals of Statistics, 1978, 6(2):461-464. 被引量:1
  • 4Tibshirani R. Regression shrinkage and selection via the Lasso[J] . Journal of the Royal Statistical Society:Series B(Methodological), 1996, 58(1):267-288. 被引量:1
  • 5Osborne M R, Presnell B, Turlach B A. A new approach to variable selection in least squares problems[J] . Journal of Numerical Analysis, 2000, 20(3):389-404. 被引量:1
  • 6Zou Hui, Hastie T. Regularization and variable selection via the elastic net[J] . Journal of the Royal Statistical Scociety:Series B(Statistical Methodology), 2005, 67(2):301-320. 被引量:1
  • 7Zou Hui. The adaptive Lasso and its oracle properties[J] . Journal of the American Statistical Association, 2006, 101(476):1418-1429. 被引量:1
  • 8Fan Jianqing, Li Runze. Variable selection via nonconcave penalized likelihood and its oracle properties[J] . Journal of the American Statistical Association, 2001, 96(456):1348-1360. 被引量:1
  • 9Zhang Cunhui. Nearly unbiased variable selection under minimax concave penalty[J] . Annals of Statistics, 2010, 38(2):894-942. 被引量:1
  • 10Becker C, Gather U. The masking breakdown point of multivariate outliers identification rules[J] . Journal of the American Statistical Association, 1999, 94(447):947-955. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部