期刊文献+

Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton 被引量:3

Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton
原文传递
导出
摘要 Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton. Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction (HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control (MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is for- mulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative (PID) method in the time domain with real experiments and in the frequency domain with simu- lations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第4期275-283,共9页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.51221004)
关键词 Interaction force Adaptive control EXOSKELETON Human-machine interaction(HMI) IMPEDANCE Interaction force, Adaptive control, Exoskeleton, Human-machine interaction (HMI), Impedance
  • 相关文献

参考文献19

  • 1Azzurra, C. Nicola, V. Francesco, G. et al. 2012. Mecha- tronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilita- tion. IEEE/ASME Trans. Mechatron. 17(5):884-894. [doi: 10.1109/TMECH.2011.2144614]. 被引量:1
  • 2Bi, Q. Yang, C.J. Deng, X.L. et al. 2013. Contacting me- chanical impedance of human finger based on uncertain system. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1619-1624. [doi:10.1109/AIM.2013.65 84328]. 被引量:1
  • 3Fang, H.G. Xie, Z.W. Liu, H. et al. 2009. An exoskeleton force feedback master finger distinguishing contact and non-contact mode. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1059-1064. [doi:10.1109/ AIM.2009.5229726]. 被引量:1
  • 4Hogan, N. 1985. Impedance control: an approach to manipu- lation: part I- theory. J. Dynam. Syst. Meas. Contr. 107(1):1-7. 被引量:1
  • 5Huo, W.G. Huang, J. Wang, Y.J. et al. 2011. Control of upper-limb power-assist exoskeleton based on motion in- tention recognition. Int. Conf. on Robotics and Automa- tion, p.2243-2248. [doi: 10.1109/ICRA.2011.5980483]. 被引量:1
  • 6Kamal, H.S. Hamid, M. Farrokh, J.S. 2010. Model refer- ence adaptive control design for a teleoperation system with output prediction. J. Intell. Robot. Syst. 59:319-339 [doi: 10.1007/s 10846-010-9400-4]. 被引量:1
  • 7Kamnik, R. Matko, D. Bajd, T. 1998. Application of model reference adaptive control to industrial robot impedance control. J. Intell. Robot. Syst. 22:153-163. [doi:10.1023/ A: 1007932701318]. 被引量:1
  • 8Kiguchi, K. Hayashi, Y. 2012. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man. Cybern. B, 42:1064-1071. [doi:10.1109/ TSMCB.2012.2185843]. 被引量:1
  • 9Nakagawara, S. Kajimoto, H. Kawakami, N. et al. 2005. An encounter-type multi-fingered master hand using cir- cuitous joints. Proc. IEEE Int. Conf. on Robotics and Automation, p.2667-2672. [doi:!0.1109/ROBOT.2005. 1570516]. 被引量:1
  • 10Nicosia, S. Tomei, P. 1984. Model reference adaptive con- trol algorithms for industrial robots. Automatica, 20(5): 635-644. [doi: 10.1016/0005-1098(84)90013-X]. 被引量:1

同被引文献43

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部