期刊文献+

弱群余代数的交叉积

Crossed Products of Weak Hopf Group Coalgebras
下载PDF
导出
摘要 该文引入弱群交叉积的概念,并给出弱群交叉积代数和通常的张量积余代数构成弱半Hopf群余代数的充要条件,接着证明了弱群交叉积上的对偶定理,推广了沈和王^([7-8])的主要结果. In this paper, the authors introduce the notion of a weak group crossed product and give a sufficient and necessary condition under which weak group crossed product algebras and the usual tensor product coalgebra become a weak semi-Hopf group-coalgebra. Finally, we prove a duality theorem for weak group crossed products, which extends the main results given by Shen and Wang^[7-8].
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第2期327-337,共11页 Acta Mathematica Scientia
基金 江苏省自然科学基金(BK2012736)资助
关键词 对偶定理 弱Hopf群余代数 弱群交叉积 Duality theorem Weak Hopf group-coalgebra Weak group crossed product.
  • 相关文献

参考文献15

  • 1BShm G, Brzezifiski T. Cleft extensions of Hopf algebroids. Appl Categor Structure, 2006, 14:431-469. 被引量:1
  • 2BShm G, Nill F, Szlachanyi K. Weak Hopf algebras I: Integral theory and C*-structure. J Algebra, 1999, 221:385-438. 被引量:1
  • 3Blattner R, Cohen M, Montgomery S. Crossed product and inner actions of Hopf algebras. Trans Amer Math Soc, 1986, 298:671-711. 被引量:1
  • 4Blattner R, Montgomery S. Crossed product and Galois extensions of Hopf algebras. Pacific Journal of Math, 1989, 137:37-54. 被引量:1
  • 5Caenepeel S, De Lombaerde M. A categorical approach to Turaev's Hopf group-coalgebras. Comm Algebra, 2006, 34:2631-2657. 被引量:1
  • 6刘玲,王栓宏.构造群缠绕模范畴成为辫子张量范畴[J].数学物理学报(A辑),2010,30(6):1612-1620. 被引量:1
  • 7Shen B L, Wang S H. Blattner-Cohen-Montgomery's duality theorem for (weak) group smash products. Comm Algebra, 2008, 36:2387-2409. 被引量:1
  • 8Shen B L, Wang S H. On group crossed products. Int Electron J Algebra, 2008, 4:177-188 Turaev V. Homotopy field theory in dimension 3 and crossed group-categories. 2000, Preprint arxiv: math GT/0005291. 被引量:1
  • 9Turaev V. Homotopy field theory in dimension 3 and crossed group-categories. 2000, Preprint arxiv: math GT/0005291. 被引量:1
  • 10Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171:75-122. 被引量:1

二级参考文献12

  • 1Anderson F W,Fuller K R.Rings and Categories of Modules (second edition).Berlin:Springer-Verlag,1992. 被引量:1
  • 2Brzezinski T,Majid S.Coalgebra bundles.Comm Math Phys,1998,191:467-492. 被引量:1
  • 3Caenepeel S,Militaru G,Zhu S.Doi-Hopf modules,Yetter-Drinfel'd modules and Frobenius type properties.Trans Amer Math Soc,1997,349:4311-4342. 被引量:1
  • 4Caenepeel S,Militaru G,Zhu S.Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations.Lect Notes in Math,1787.Berlin:Springer-Verlag,2002. 被引量:1
  • 5Caenepeel S,Van Oystaeyen F,Zhou B.Making the category of Doi-Hopf modules into a braided monoidal category.Algebras and Representation Theory,1998,1:75-96. 被引量:1
  • 6Doi Y.Unifying Hopf modules.J Algebra,1992,153:373-385. 被引量:1
  • 7Joyal A,Street R.Braided tensor categories.Adv in Math,1993,102:20-78. 被引量:1
  • 8Mac Lane S.Categories for the Working Mathematician.Berlin:Springer-Verlag,1971. 被引量:1
  • 9Montogomery S.Hopf Algebras and Their Actions on Rings.Providence,RI:American Mathematical Society,1993. 被引量:1
  • 10Sweedler M.Hopf Algebras.New York:Benjamin,1969. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部