摘要
该文引入弱群交叉积的概念,并给出弱群交叉积代数和通常的张量积余代数构成弱半Hopf群余代数的充要条件,接着证明了弱群交叉积上的对偶定理,推广了沈和王^([7-8])的主要结果.
In this paper, the authors introduce the notion of a weak group crossed product and give a sufficient and necessary condition under which weak group crossed product algebras and the usual tensor product coalgebra become a weak semi-Hopf group-coalgebra. Finally, we prove a duality theorem for weak group crossed products, which extends the main results given by Shen and Wang^[7-8].
出处
《数学物理学报(A辑)》
CSCD
北大核心
2014年第2期327-337,共11页
Acta Mathematica Scientia
基金
江苏省自然科学基金(BK2012736)资助
关键词
对偶定理
弱Hopf群余代数
弱群交叉积
Duality theorem
Weak Hopf group-coalgebra
Weak group crossed product.