期刊文献+

基于投影数据库的改进单向COFI-tree关联分类 被引量:2

Associative Classification for Improvement of SDCOFI-tree Based on Projected Database
下载PDF
导出
摘要 针对关联分类算法面对大数据集事务库时的候选集庞大、难以生成挖掘数据结构和高资源消耗等问题,提出了一种基于投影数据库的改进单向COFI-tree频繁项集生成算法,结合相关性度量等剪枝操作提取高效的分类规则,通过分治数据库有效降低整个数据库对资源的需求,减小对频繁项集的搜索空间和非频繁项集的数量,从而实现对频繁项集生成的优化过程.实验结果表明该算法通过生成初始投影数据库,并利用单向COFI-tree挖掘频繁项集的时间远小于同类算法对数据集进行直接挖掘,为大数据集的关联分类挖掘提供了一种新的解决途径. For the purpose of solving the associative classification algorithm in large data transaction datasets when the candidate set is large, difficult to generate data mining structure and high consumption of resources, a new frequent itemsets generation algorithm based on projected database and improved single direction COFI-tree is proposed, combined with the correlation measure to get the ef- ficient class association rules. The whole large data transaction datasets is divided into several projected databases which reduced the demand for resources, and decreases the traversal space and the sum of infrequent itemsets, so as to realize the optimization process to generate frequent itemsets. Experimental results show that the algorithm by generating the initial projected database, and mining fre- quent itemsets time is far less than the same kind of algorithms, and provides a new solution for associative classification of mining large dataset.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第4期791-796,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61163057)资助 广西可信软件重点实验室项目(kx201111)资助 广西教育厅科研项目(201012MS088)资助
关键词 关联分类 投影数据库 COFI—tree 频繁项集 相关性度量 associative classification projected database COFI-tree frequent itemsets correlation measure
  • 相关文献

参考文献5

二级参考文献48

  • 1陈晓云,胡运发.基于自适应加权的文本关联分类[J].小型微型计算机系统,2007,28(1):116-121. 被引量:6
  • 2CHEN Yongqiang, HU Leifang. Study on data mining application in CRM system based on insurance trade [C]//The 7th International Conference on Electronic Commerce. New York, USA: ACM, 2005: 839-841. 被引量:1
  • 3HANA J W, NISHIOB S, KAWANOC H,et al. Gen eralization-based data mining in object-oriented data bases using an object cube model[J]. Data and Knowl edge Engineering, 1998, 25(1/2): 55-97. 被引量:1
  • 4LI Wenmin, HAN Jiawei, PEI Jian. CMAR:accurate and efficient classification based on multiple class association rules [C]//The 2001 IEEE International Conference on Data Mining. Piscataway, NJ, USA: IEEE,2001 : 369-376. 被引量:1
  • 5LIU Bing, HSU W, MA Yiming. Integrating classification and association rule mining [C]//The 4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 1998: 80-86. 被引量:1
  • 6WANG Ke, ZHOU Senqiang, HE Yu. Growing decision tree on support-less association rules [C]//The 6 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2000: 265-269. 被引量:1
  • 7MURPHY-MERZJ C. UCI repository of machine learning databases[EB/OL]. [2008-04-12]. http:// www. its. uci. edu/mlearn/_MLRepository. html. 被引量:1
  • 8LIU B, HSU W, MA Y. Integrating classification and association rule mining[C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York, USA: AAAI, 1998. 被引量:1
  • 9LI Wen-min, RAN Jia-wei, PEI Jian. CMAR: accurate and efficient classification based on multiple class association rules[C]//The 2001 IEEE International Conference on Data Mining. Piscataway, NJ, USA: IEEE, 2001: 369-376. 被引量:1
  • 10HANA J W, NISHIOB S, KAWANOC H, et al. Generalization-based data mining in object-oriented databases using an object-cube model[J]. Data and Knowledge Engineering, 1998,25(1/2): 55-97. 被引量:1

共引文献36

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部