期刊文献+

染料敏化太阳电池钌系敏化剂

Ruthenium Sensitizers for Dye-Sensitized Solar Cells
原文传递
导出
摘要 钌系敏化剂是染料敏化太阳电池(DSSC)研究最早也最成功的敏化剂类型之一,最高光电转换效率已达到11%以上。研究总结钌系敏化剂的结构、谱学性质、电化学性质与其光电转换性能之间的构效关系,对于设计合成新的具有更高性能的敏化剂、推进DSSC的实用化进程具有十分重要的意义。本文综述了钌系敏化剂的研究进展,将这类敏化剂按结构和性质进行分类,讨论了其分子结构、电子结构、谱学性质、电化学性质对其光吸收能力、电子注入效能、电荷传输与复合等因素的影响,并对其光电转换性能进行了详细评述,总结了其结构与光电转换性能之间的构效关系,概括了高效钌系敏化剂的结构特征,为更高效敏化剂的设计合成提供了有价值的参考。 Dye-sensitized solar cell (DSSC) is one of the major development trends of solar cells due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs using ruthenium complexes as sensitizers have achieved the highest photo-to-electric conversion efficiencies over 11% with very good stability, implying potential practical applications. It is very important to study the structure-performance-relationships between the structures and the photo-to-electric conversion performances. In this paper, we review the recent research progress of the ruthenium sensitizers. The sensitizers are divided into several groups according to the various substituent groups attached to the bipyridine ring and the numbers of the --NCS ligand. The relationships between the structures, the spectroscopic properties, the electron injection efficiency, the electron transfer and recombination are discussed. The structure characters of the high efficiency sensitizers are summarized, which provides valuable information for design and screening of better sensitizers. Furthermore, special attention has been paid to the design principles of these dyes. Co-sensitization, an emerging technique to extend the absorption range, is also discussed as a choice to improve the performance of the solar cell devices. The working principle of the DSSC is also discussed in detail.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2014年第4期609-625,共17页 Progress in Chemistry
基金 国家重点基础研究发展计划(973)项目(No.2011CBA00701) 国家自然科学基金项目(No.21171084) 教育部留学回国人员科研启动基金项目 山东省高校优秀科研创新团队项目 泰山学者研究基金资助~~
关键词 染料敏化太阳电池 钌系敏化剂 光电性能 dye-sensitized solar cell ruthenium sensitizer photo-electric performance
  • 相关文献

参考文献73

  • 1Chapin D M, Fuller C S, Pearson G L. J. Appl. Phys. , 1954, 25 : 676. 被引量:1
  • 2Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovohaics, 2009, 17 : 85. 被引量:1
  • 3O'Regan B, GrAtzel M. Nature, 1991 , 353: 737. 被引量:1
  • 4Bonaecorso F. Int. J. Photoenergy, 2010, 727134: 1. 被引量:1
  • 5Caramori S, Cristino V, Boaretto R, R Argazzi, Bignozzi C A Carlo A D. Int. J. Photoenergy, 2010, 458614: 1. 被引量:1
  • 6Hagteldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev. , 2010, 110: 6595. 被引量:1
  • 7Nazeeruddin M K, Barano E, Gratzel M. Sol. Energy, 2011 85: 1172. 被引量:1
  • 8Singh S P, Islam A, Yanagida M, Han L. Int. J. Photoenergy 2011 , 520848 : 1. 被引量:1
  • 9Islam A, Singh S P, Han L. Funct. Mater. Lett. , 2011, 4 21. 被引量:1
  • 10Islam A, Singh S P, Yanaglda M, Karlm M R, Han L. Int. 3 Photoeoergy, 2011, 757421 : 1. 被引量:1

二级参考文献92

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部