期刊文献+

一种新的LDPC码编码方法 被引量:2

Research on LDPC Codes with Module-cyclic Method
下载PDF
导出
摘要 为了降低低密度奇偶校验码(Low Density Parity Check Code,LDPC)的复杂度,减少编码时的存储空间,同时保证LDPC码的性能,提出了一种新的LDPC码的编码方法——模循环方法,并给出了模循环方法产生的校验矩阵中无四环和无六环的充要条件。该方法可以简化编码设计,占用储存空间小,计算复杂度低,其性能达到了IEEE 802.16e中所使用LDPC码的水平,适合在宽带通信中使用。 In order to reduce the computational complexity and memory space of LDPC codes without performance loss, a novel method for LDPC codes is presented, which is so called Module-Cyclic LDPC codes. A necessary and sufficient condition for check matrix without 4-circle and 6-circle for this method is given. The performance and experiment results analysis show that the proposed method with low computational complexity and memory space has the same BER level as the LDPC codes proposed in IEEE 802.16e. It can be concluded that the novel method is suitable for broadband communication systems.
出处 《无线电工程》 2014年第4期14-16,41,共4页 Radio Engineering
关键词 LDPC码编码 准循环方法 模循环方法 IEEE 802.16e LDPC IEEE 802.16e quasi-cyclic LDPC code module-cyclic LDPC code
  • 相关文献

参考文献12

  • 1GALLAGER R G. Low-density Parity check Codes [ M ]. MA :MIT Press, 1963. 被引量:1
  • 2张忠培,史治平,王传丹编著..现代编码理论与应用[M].北京:国防工业出版社,2007:289.
  • 3MAC P C. Quasi-cyclic Low-density Parity-check Codes From Circulant Permutation Matrices [ J ]. IEEE Transac- tions on Information Theory, 2004, 50(8):1 758-1 792. 被引量:1
  • 4肖扬,徐丹.准循环LDPC好码设计[J].系统工程与电子技术,2009,31(5):1011-1017. 被引量:10
  • 5MYUNG S, YANG K C, KIM J. Quasi-cyclic LDPC Codes for Fast Encoding[ J]. IEEE Transactions on Infor- mation Theory, 2005, 51(8) :2 894-2 901. 被引量:1
  • 6KOU Y, LIN S, FOSSORIER M. Low Density Parity Check Codes Based on Finite Geometries:A Rediscovery and New Results [ J ]. IEEE Transactions Information Theory, 2001, 47(10) :2 711-2 736. 被引量:1
  • 7肖扬编著..Turbo与LDPC编解码及其应用[M].北京:人民邮电出版社,2010:248.
  • 8IEEE PS02.16e/DS.IEEE Standard for Local and Metro- politan area networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems[ S], 2005. 被引量:1
  • 9DVB-S2. Standard Draft ETSI EN 302 307 V1. 1. 1 [ S ],2004. 被引量:1
  • 10XIAO Y, KIM K. Good Encodable Irregular Quasi-cyclic LDPC Codes [ C] /// llth IEEE Singapore International Conference on Communication Systems (ICCS 2008), 2008:1 291-1 296. 被引量:1

二级参考文献20

  • 1Gallager R G. Low-density parity-check codes[M]. Cambridge, MA: MIT Press, 1963. 被引量:1
  • 2Richardson T, Urbanke R. The capacity of low-density parity check codes under message passing decoding[J].IEEE Trans. on Inform. Theory, 2001, 47(2): 599-618. 被引量:1
  • 3Chung S Y, Forney G D, Richardson Jr T J, et al. On the design of low-density parity check codes within 0. 004 5 dB of the Shannonlimit[J]. IEEE Commun. Lett. , 2001, 5(2):58-60. 被引量:1
  • 4MacKay D J C, Wilson S T, Davey M C. Comparison of construetions of irregular Gallager codes[J]. IEEE Trans. on Corn munications, 1999,47(10) : 1449 - 1454. 被引量:1
  • 5Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Trans. on Information Theory, 2004, 50(12):2966-2984. 被引量:1
  • 6Seho Myung, Kyeongcheol Yang. A combining method of quasicyclic LDPC codes by the Chinese remainder theorem[J]. IEEE Communications Letters, 2005. 9(9) :823 - 825. 被引量:1
  • 7Lin Dengsheng, Li Qiang, Li Shaoqian. Semi-random construction of quasi-cyclic LDPC codes[C]//Proc. of International Conference on Communications, Circuits and Systems, 2005 ( 1 ) : 9 -13. 被引量:1
  • 8Kim Sunghwan, No Jong-Seon, Chung Habong, et al. Girth analysis of Tanner's (3,5) QC LDPC codes[C]//Proc, of Inter national Symposium on 1n formation Theory, 2005: 1632-1636. 被引量:1
  • 9Kou Y, Lin S, Fossorier M. Low density parity check codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans. on Inform. Theory, 2001, 47(11):2711 - 2736. 被引量:1
  • 10IEEE Std 802.16e. Draft IEEE standard for local and metropol itan area networks, Part 16: Air interface for fixed and mobile broadband wireless access systems. 2006. 被引量:1

共引文献9

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部