期刊文献+

一种关于眼底渗血区检测的双标记双分割算法

A Testing Double-marked Double Segmentation Algorithm for Fundus Oozing Area
下载PDF
导出
摘要 眼底出血区检测在疾病诊断中具有重要意义,计算机处理眼底图像可以减少医生的重复劳动。但由于受到眼底图像质量、检测算法,以及出血区的多样性和复杂性等因素的影响,目前的检测方法存在检测种类粗糙和检出率低的问题。文中提出一种新的眼底病灶检测分割算法,算法包括两次分割和两次标记提取。第一次分割是对图像进行简单的最大类间方差分割,主要是去除大部分的背景,提取分割得到的图像粗标记;第二次分割,主要是对形态学处理后的图像进行连通标记,进行类聚分割,以获得更细致的病变渗血区域。实验结果表明该算法是有效的。 Subhyaloid hemorrhage detection in the diagnosis of diseases is important, fundus image processing can reduce the computer doctor of duplication. But due to retinal image quality, detection algorithms, as well as the diversity and complexity of the bleed area and other factors, the cunnt detection methods have kinds of rough and low rate of detection. It presents a new segmentation of fundus oculi lesion detection algorithm, including two segmentation and two marked extraction. Division for the first time is the simple segmentation of maximum cluster variance for image, mainly removing most of the background, extracting image segmentation tags. The second division, mainly to connect tag, the processed image is morphology for segmenting type,in order to obtain more detailed bleeding lesion area. Ex- perimental results show the effectiveness of the algorithm.
出处 《计算机技术与发展》 2014年第4期207-209,213,共4页 Computer Technology and Development
基金 广东省大学生创新训练项目(1057312025) 广东药学院大学生创新训练项目(2012-20)
关键词 眼底病灶检测 图像增强 阈值分割 形态学处理 类聚分割 fundus oculi lesion detection image enhancement threshold segmentation morphological processing cluster segmentation
  • 相关文献

参考文献14

  • 1Walter T, Klein Jean-Claude, Massin P, et al. A contribution of image processing to the diagnosis of diabetic retinopathy- detection of exudates in color fundus images of the human reti- na[ J ]. IEEE transactions on medical imaging ,2002,21 (10) : 1236-1243. 被引量:1
  • 2吴振中主编..现代临床眼科学[M].长沙:湖南科学技术出版社,1996:453.
  • 3Oliver F,Rajendra U,Ng E Y K. Algorithms for the automated detection of diabetic retinopathy using digital fundus images : A review [ DB/OL ]. 2012. http://link, springer, com/article/ 10. 1007/s10916-010-9454-7. 被引量:1
  • 4Carnimeo L. Diabetic damage detection in retinal images via a sparsely connected neurofuzzy network [ J ]. LNCS, 2008, 5227 : 1175-1182. 被引量:1
  • 5刘波.视网膜血管分割方法研究[D].长沙:中南大学,2012. 被引量:1
  • 6冯皓.图像区域生长算法的稳定性研究[D].福州:福建师范大学,2012. 被引量:1
  • 7陈喆,张丽芳,广崎真史,严浩.糖尿病视网膜病变眼底彩色照片的读片可信度分析[J].中华眼底病杂志,2006,22(1):47-48. 被引量:13
  • 8顾乡..非荧光造影图像的高血压病灶提取方法[D].吉林大学,2007:
  • 9Xu W H. Detection of microaneurysms in bifrequency space based on SVM [ C ]//Proc of ICECC2011. Ningbo: IEEE, 2011:1432-1435. 被引量:1
  • 10杨杰,付忠良,阮波.照度不均匀图像的快速自适应灰度修正[J].计算机应用,2005,25(3):598-600. 被引量:14

二级参考文献35

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部