Adaptation of Artificial Intelligence to Predict Concrete Strength
Adaptation of Artificial Intelligence to Predict Concrete Strength
出处
《材料科学与工程(中英文B版)》
2013年第10期661-669,共9页
Journal of Materials Science and Engineering B
参考文献17
-
1N. Hamid-Zadeh, A. Jamali, N. Nariman-Zadeh, Polynomial model for concrete compressive strength prediction using gmdh-type neural networks and genetic algorithem, in: ICOSSE'06 Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering, 2006, pp. 13-18. 被引量:1
-
2D. Williams, Concrete strength prediction of early-age data-technical paper, Honor Project, Technical Paper, University of Adelaide. 被引量:1
-
3M.A. Suhad, Mathematical model for the prediction of cement compressive strength at the ages of 7&28 days within 24 hours, MSc Thesis, Al-Mustansiriya University, 2001. 被引量:1
-
4G.F. Kheder, A.M. Al-Gabban, M.A. Suhad, Mathematical model for the prediction of cement compressive strength at the ages of 7&28 days within 24 hour materials and structures, RILEM Publications SARL 264 (2003) (36) 693-701. 被引量:1
-
5I.B. Topcu, M. Sandemir, Construction and Building Materials, Construction and Building Materials 22 (4) 532-540. 被引量:1
-
6M. Pala, E. Ozbay, A. Oztas, M.I. Yuce, Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks, Construction and Building Materials 21 (2007) 384-394. 被引量:1
-
7J. Hole, K. Schabowicz, Mathematical-Neural Model for Assessing Productivity, Journal of Civil Engineering and Management 13 (1) (2007) 47-54. 被引量:1
-
8I.B. Top,u, M. Sandemir, Prediction of properties of waste AAC aggregate concrete using artificial neural network, Computational Materials Science 41 (1) (2007) 117-125. 被引量:1
-
9I.B. Topcu, M. Sandemir, Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic, Computational Materials Science 199 (1-3) (2008) 108-118. 被引量:1
-
10S. Popovics, Analysis of concrete strength versus water-cement ratio relationship, ACI Material Journal 87 (5) (1990) 517-529. 被引量:1
-
1李红,彭涛.基于BP、RBF神经网络混凝土抗压强度预测[J].武汉理工大学学报,2009,31(8):33-36. 被引量:37
-
2陈达,何琪.监理在混凝土施工中如何控制质量[J].中国高新技术企业,2008(19):221-221.
-
3周韬.应用Delphi7优化混凝土配合比调试计算[J].山西建筑,2007,33(16):367-368.
-
4席剑辉,韩敏,王立久.RBF网络在混凝土强度研究中的应用[J].仪器仪表学报,2001,22(z2):15-16.
-
5易浩军.混凝土抗压强度仿真实验研究[J].工程质量,2008,26(10):57-59.
-
6李丽英,王胜,孟凡华,孙立,韩占彪.混凝土回弹检测数据的自动处理[J].中国计量,2008(5):80-82. 被引量:1
-
7新产品[J].软件世界,2005(8):99-99.
-
8王鹏.用Excel计算沥青混凝土配合比的方法实例[J].江西建材,2016(17):188-188.
-
9Hossein REZAEI,Ramli NAZIR,Ehsan MOMENI.Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2016,17(4):273-285.
-
10磊磊.森海塞尔MM60[J].数字化用户(数字通讯),2009(18):80-80.