期刊文献+

超声乳腺影像学报告及数据系统鉴别诊断乳腺小肿块 被引量:5

Breast imaging reporting and data system in ultrasonic differential diagnosis of small solid breast masses
下载PDF
导出
摘要 目的探讨超声乳腺影像学报告及数据系统(BI-RADS)标准化描述术语鉴别诊断乳腺小肿块(最大直径均≤1.5cm)的价值。方法利用BI-RADS超声术语对159例患者共186个乳腺小肿块进行描述,并对这些超声征象进行二分类Logistic回归分析。结果良性肿块123个(123/186,66.13%),恶性肿块63个(63/186,33.87%)。超声对恶性肿块诊断的敏感度、特异度、准确率分别为71.43%(45/63)、87.80%(108/123)、82.26%(153/186)。单因素分析显示乳腺良恶性小肿块的形态、边缘、生长方向、后方回声、内部微钙化差异有统计学意义(P<0.05);多因素分析显示边缘毛刺和内部微钙化进入回归模型(P<0.05)。结论边缘毛刺及肿块内部微钙化对鉴别乳腺良恶性小肿块最具价值。 Objective To explore the value of standardized description in breast imaging reporting and data system (BI-RADS) in ultrasonic differential diagnosis of small solid breast masses (maximum diameter ≤1.5 cm). Methods Ultrasonic features of 186 small solid breast masses in 159 patients were described according to BI-RADS, and were analyzed via univariate and multivariate Logistic regression. Results Among 186 small solid breast masses, 123 (123/186, 66.13%) were benign and 63 (63/186, 33.87%) were malignant. The sensitivity, specificity and accuracy of breast ultrasound for differentiate benign from malignant masses was 71.43% (45/63), 87.80% (108/123) and 82.26% (153/186), respectively. Univariate analysis showed there were significant differences of shape, margin, orientation, posterior echo and microcalcification between benign and malignant masses (P〈0.05). Multivariate analysis showed spicules of margin and microcalcification were related with small malignant masses (P〈0.05). Conclusion Spicules of margin and microcalcification are consider to be valuable features for distinguishing small malignant breast masses from benign ones.
出处 《中国介入影像与治疗学》 CSCD 2014年第4期221-224,共4页 Chinese Journal of Interventional Imaging and Therapy
基金 深圳市医学科研基金项目(201202083)
关键词 超声检查 乳腺肿瘤 乳腺影像学报告及数据系统 Ultrasonography Breast neoplasms Breast imaging reporting and data system
  • 相关文献

参考文献10

二级参考文献46

共引文献103

同被引文献48

  • 1谷涛,傅庆诏,马喆,刘韶平,陶国伟,李海鹰,周炜.乳腺癌超声形态学表现与病理、分子生物学相关性研究[J].中国超声医学杂志,2005,21(7):503-505. 被引量:19
  • 2朱庆莉,姜玉新,孙强,周炜洵.乳腺癌彩色多普勒血流显像的多因素分析[J].中华超声影像学杂志,2006,15(2):109-112. 被引量:182
  • 3Rachel F. Cox,Maria P. Morgan.Microcalcifications in breast cancer; lessons from physiological mineralization[J]. Bone . 2012 被引量:2
  • 4Maria P. Morgan,Michelle M. Cooke,Geraldine M. McCarthy.Microcalcifications Associated with Breast Cancer: An Epiphenomenon or Biologically Significant Feature of Selected Tumors?[J].Journal of Mammary Gland Biology and Neoplasia.2005(2) 被引量:1
  • 5Banerjee Mousumi,George Julie,Song Eun Young,Roy Anuradha,Hryniuk William.Tree-based model for breast cancer prognostication. Journal of clinical oncology : official journal of the American Society of Clinical Oncology . 2004 被引量:1
  • 6Pornpim Korpraphong,Oranan Tritanon,Woranuj Tangcharoensathien.Ultrasonographic Characteristics of Mammographically Occult Small Breast Cancer. JOURNAL OF BREAST CANCER . 2012 被引量:1
  • 7Hirota S,Ito A,Nagoshi J,Takeda M,Kurata A,Takatsuka Y,Kohri K,Nomura S,Kitamura Y.Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Laboratory investigation; a journal of technical methods and pathology . 1995 被引量:1
  • 8Costantini M,Belli P,lerardi C,et al.Solid breastmass characterization:use of the sonographic,BI-RADS classification[J].Radiol,Med,2007,112(6):877-894. 被引量:1
  • 9Gokalp G,Topal U,Kiaildaya E.PowerD oppler sonoraraphy:anything to add to BI-RADS US in solid breast masses?[J].Eur J Radiol,2009,70(1):77-85. 被引量:1
  • 10王雁,郭晓霞,黄洁,刘巍,袁文佳.乳腺影像报告与数据系统在乳腺肿块诊断中的应用[J].河南医学研究,2010,19(3):347-350. 被引量:2

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部