期刊文献+

大型风电场的最优无功控制 被引量:2

The Optimal Reactive Power Control of Large Wind Farm
下载PDF
导出
摘要 在基于鼠笼式感应发电机(SCIG)和静态无功补偿器(SVC)的风电网络中,风速的变化导致风功率变化,为了优化电压分布,需要将SVC和其他无功设备以最优的方式投入。目前的优化方法基于有功损耗最小和电压偏差最小这两个目标函数。SVC无功功率储备(SVC-RPR)最大作为一个新的目标函数被引入。3个目标函数按照一定的权重合成一个总的目标函数,并采用粒子群优化算法(PSO)对该目标函数进行求解。最后建立无功优化方案模型进行测试仿真,得到对SVC进行有效控制可以很好地改善电压分布的结论。 In a wind power network based on squirrel-cage induction generator (SCIG)and SVC,the change of wind speed causes the change of wind power. In this case,in order to optimize voltage distribution,the SVC and other reactive equipment should be put in the best way. At present,the optimization methods mainly based on two objective functions of minimizing the total active power losses and the total voltage deviations. The SVC reactive power reserve (SVC-RPR)is added to the problem as a third objective function to be maximized with the purpose of further compensation usage during dynamic operation. The three objective functions are synthesized to a general objective function according to certain weights. And then,the PSO is used to solve the objective function. At last, reactive power optimization model is built and the simulation is tested,the conclusion is the voltage distribution is improved obviously with the effective control of SVC.
出处 《电力科学与工程》 2014年第3期73-78,共6页 Electric Power Science and Engineering
关键词 无功优化控制 粒子群优化算法 SVC-RPR SCIG optimal reactive power control SVC-RPR SCIG PSO
  • 相关文献

参考文献14

  • 1Bakare G A, Krost G, Venayagamoorthy G K, et al. Differ- ential evolution approach for reactive power optimization of Nigerian grid system [ C ]. Tampa: IEEE Power Engineer- ing Society General Meeting, 2007. 1 -6. 被引量:1
  • 2Zhu J. Optimization of power system operation [ M ]. New Jersey: John Wiley & Sons, Inc. , 2009. 被引量:1
  • 3Venayagamoorthy G K, Harley R G. Swarm intelligence for transmission system control [ C]. Tampa: Power Engineer- ing Society General Meeting, 2007. 1 -4. 被引量:1
  • 4Li L, Zeng X J, Zhang P. Wind farms reactive power opti- mization using genetic/tabu hybrid algorithm [ C ]. Hunan : Intelligent Computation Technology and Automation, 2008. 1272 - 1276. 被引量:1
  • 5Wei X, Qiu X, Xu J, et al. Reactive power optimization in smart grid with wind power generator [ C ]. Chengdu : Power and Energy Engineering Conference, 2010. 1 -4. 被引量:1
  • 6Li L, Zeng, X J, Zhang P, et al. Optimization of reactive power compensation in wind farms using sensitivity analysis and tabu algorithm [ C ]. Edmonton: Industry Applications Society Annual Meeting, 2008. 1 -5. 被引量:1
  • 7E1-Helw H M, Tennakoon S B. Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms con- sidering the new UK grid code [ J]. Renewable Energy, 2008, 33: 1-12. 被引量:1
  • 8Zaraki A, Bin Othman M F. Implementing particle swarm optimization to solve economic load dispatch problem [ C ]. Malacca: Soft Computing and Pattern Recognition, 2009. 60 - 65. 被引量:1
  • 9Mantawy A H, A1-Ghamdi M S. A new reactive power opti- mization algorithm [C]. Bologna : Power Tech Conference Proceedings, 2003. 被引量:1
  • 10李鸿鑫,李银红,李智欢.多目标进化算法求解无功优化问题的比较与评估[J].电网技术,2013,37(6):1651-1658. 被引量:31

二级参考文献68

共引文献82

同被引文献37

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部