摘要
首先建立作用于光滑微分形式的复合算子T·G的Poincaré-型积分不等式,其中算子T为同伦算子,G为格林算子。在此基础上,利用A-调和方程解的相关性质及结果,给出作用于非齐次A-调和张量的复合算子T·G的单权Poincaré-型积分估计式。
First it establishes the Poincaré-type integral inequalities for the composite operator T · G acted on smooth differential forms. Operator T is homotopy operator and G is Green's operator. On the basis of this, using the properties and results on estimates for the A-harmonic equations, the single weighted Poincaré-type integral estimates are obtained for the composite operator T · G acted on the non-homogeneous A-harmonic tensors.
出处
《黑龙江工程学院学报》
CAS
2014年第1期78-80,共3页
Journal of Heilongjiang Institute of Technology
关键词
非齐次A-调和方程
微分形式
双权函数
积分不等式
non-homogeneous A-harmonic equation
differential form
two-weight function
integralinequality