期刊文献+

非协调有限元逼近的梯度恢复型后验误差估计(英文) 被引量:1

A Posteriori Error Estimate of Gradient Recovery Type for Nonconforming Finite Element Approximation
下载PDF
导出
摘要 本文给出二阶椭圆型方程的非协调有限元的梯度恢复型后验误差估计.后验误差估计是在Crouzeix-Raviart非协调有限单元上得到的,并且给出误差的上下界,更进一步可以证明所得的后验误差估计在拟一致网格上是渐近精确的,所以误差估计是可行的、有效的.上界证明过程依赖于"Helmholtz分解",下界证明主要依赖"bubble函数".数值结果验证了理论的正确性. In this paper, we derive gradient recovery type a posteriori error estimate for piecewise linear nonconforming finite element approximation of second order elliptic equations. We show that a posteriori error on the Crouzeix-Raviart nonconforming element and give both upper and lower bounds of the estimates. Moreover it is proved that a posteriori error estimate is also asymptotically exact on the quasi-uniform meshes. The a posteriori error estimates are reliable and efficient. The proof of upper bounds relies on a Helmholtz decomposition, and low bounds relies on bubble function. The numerical results demonstrating the theoretical results are also presented in this paper.
作者 徐静 陈晶
出处 《应用数学》 CSCD 北大核心 2014年第2期248-257,共10页 Mathematica Applicata
基金 the Natural Science Foundation of Jiangsu Province(BK20131109)
关键词 非协调 Crouzeix—Raviart元 后验误差估计 梯度恢复 Nonconforming Crouzeix-Raviart element Posteriori error estimate Gradient recovery
  • 相关文献

参考文献11

  • 1Ainsworth M, ()den J T. A posteriori error estimation in finite element analysis[J]. Comput. Methods Appl. Mech. Engrg. , 1997,142(1/2) :1-88. 被引量:1
  • 2ZHANG Zhimin, Zhu J Z. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method(D [J]. Comput. Methods Appl. Mech. Engrg. , 1995,123 (1/4).. 173-187. 被引量:1
  • 3DU Liu, YAN Ningning. Gradient recovery type a posteriori error estimate for finite element approxima- tion on non-uniform meshes[J]. Advances in Comput. Math. ,2001,14:175-193. 被引量:1
  • 4Dari E, Durhn R, Padra C, Vampa V. A posteriori error estimators for non-conforming finite element methods[J]. RAIRO Mod61. Math. Anal. Num6r. , 1996,30 (4) :385-400,. 被引量:1
  • 5Verftirth R. A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques[M]. New York: Wiley, 1996. 被引量:1
  • 6Carstensen C,Bartels S,Jansche S. A posteriori error estimates for nonconforming finite element methods [J]. Numer. Math. ,2002,92(2):232-256. 被引量:1
  • 7C16ment P. Approximation by finite element functions using local regularization [-J ]. RAIRO Anal. Num6r. ,1975,9z77-84. 被引量:1
  • 8Carstensen C. Constants in C16ment-interpolation error and residial based a posteriori estimates in finite element methods[J]. East-West J. Numer. Math. ,2000,8(3): 153-175. 被引量:1
  • 9YING Longan. Lecture Notes of Finite Element Method[M], Bei]ing:Bei-ing University, 1985. 被引量:1
  • 10Ciarlet P,Lions P. Handbook of Numerical Analysis. Part 1- Finite Element Methods-M-. Amsterdam: Elsevier Science Publisher, 1991. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部