期刊文献+

一对特殊矩阵的联合谱半径的有限步实现

The Finite-step Realization of the Joint Spectral Radius of a Pair of n × n Special Matrices
下载PDF
导出
摘要 一个矩阵集具有有穷性是说这个矩阵集中的矩阵内积的最大增长率在一定周期内可以得到.主要研究了一对方阵集的联合/广义谱半径的有限步可实现性,即任意的两个n×n实方阵S1,S2所组成的矩阵集S={S1,S2},矩阵S1中的元素都大于0,而矩阵S2相似于一个对角矩阵,且S2中的所有非零元素都具有相同的符号,证明了矩阵集S={S1,S2}具有有穷性. A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product .It studies the finite-step realization of the joint/generalized spectral radius of a pair of real square matrices .If S={S1 ,S2} where S1,S2 are n×n matrices and S1 =(aij) with aij≥0 and S2 is similar to a diagonal matrix whose nonzero elements have the same sign , S has the finiteness property .
出处 《广东工业大学学报》 CAS 2014年第1期51-54,共4页 Journal of Guangdong University of Technology
基金 广东省自然科学基金资助项目(S2011010005075)
关键词 有穷性 联合 广义谱半径 对角矩阵 the finiteness property the joint/generalized spectral radius diagonal matrix
  • 相关文献

参考文献19

  • 1Rota G C. Strang G. A note on tile joint spectral radius [ M ]. Indag Math, 1960 : 379-381. 被引量:1
  • 2Dai X,Huang Y, Xiao M. Realization of joint spectral radi- us via ergodic theory[J]. Electron Res Announc Math Sci, 2011,18( 1 ) :22-30. 被引量:1
  • 3Wirth F. The generalized spectral radius and extremal norms [ J ]. Linear Algebra App1,2002,342 ( 2 ) : 17-40. 被引量:1
  • 4Daubechies I, Lagarias J C. Sets of matrices all infinite products of which converge [ J ]. Linear Algebra Appl, 1992,16! ( 1 ) :227-263. 被引量:1
  • 5Berger M A, Wang Y. Bounded senfigroups of matrices [ J ]. Linear Algebra Appl, 1992,166 ( 3 ) :21 - 27. 被引量:1
  • 6Blondel V D, Theys J, Vladimirov A A. An elementary counterexample to the finiteness conjecture [ J ]. Matrix Anal App1,2003,24( 3 ) :963-970. 被引量:1
  • 7Cicone A, Guglielmi N, Serra-Capizzano S, et al. Finite- ness property of pairs of 2 × 2 sign-matrices via real extre- real polytope norms [ J ]. Linear Algebra Appl, 2010,432 ( 1 ) :796-816. 被引量:1
  • 8Dai X. Extremal and barabanov semi-norms of a semigroup generated by a bounded family of matrices[ J ]. J Math Anal Appl,2011,379(7) :827-833. 被引量:1
  • 9Dai X, Kozyakin V S. Finiteness property of a bounded set of matrices with uniformly sub-peripheral spectrum [ J ]. Commun Technol Electron,2011,56(5) :1564-1569. 被引量:1
  • 10Shih M H, Wu J W, Pang C T. Asymptotie stability and generalized Gelfand spectral radius formula[ J ]. Linear Al- gebra Appl, 1997,252 ( 2 ) : 61-70. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部