期刊文献+

基于最优变异的万有引力算法 被引量:3

The Gravitational Algorithm Based on the Optimal Mutation
下载PDF
导出
摘要 针对标准引力算法存在的收敛速度慢、容易在进化过程中陷入停滞的缺点,给出了一种基于最优变异的万有引力算法.该算法引入了一种变异算子使得算法能够跳出局部最优解,同时还能提高算法的收敛速度;对变异后不可行物质给出了约束处理方法.数值实验的结果表明新算法不仅具有较好的寻优能力,而且在一定程度上提高了算法的稳定性,是一种有效的算法. Considering the low convergence speed of the standard gravitational algorithm , and its being stalled easily in the evolutionary process , it proposes the gravitational algorithm , based on the optimal mutation .A mutation operator was introduced , which made it possible for the algorithm to escape from lo-cal optima , thus accelerating the convergence speed .A constraint handling mechanism was proposed for the infeasible mass after mutation .The simulation results show that the new algorithm not only has better ability of optimization , but also improves to some extent the stability .It is an effective algorithm .
作者 徐怀祥 刘伟
出处 《广东工业大学学报》 CAS 2014年第1期46-50,共5页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(60974077)
关键词 万有引力算法 变异 搜索 gravitational algorithm mutation search
  • 相关文献

参考文献15

  • 1Rashedi E, Nezamabadi H, Saryazdi S, GSA:A gravita- tional search algorithm [ J ]. Information Sciences,2009,179 (13) :2232-2248. 被引量:1
  • 2Nihan Kazak, Alpaslan Duysak. Modified gravitational search algorithm[ EB/OL]. (2012-07-04) [ 2012-12-11]. http ://ieeexplore. ieee. org/Xplore/guesthome, jsp. 被引量:1
  • 3刘勇,马良.非线性极大极小问题的混沌万有引力搜索算法求解[J].计算机应用研究,2012,29(1):47-48. 被引量:27
  • 4Higashi N, Iba H, Particle swarm optimization with Gaussi- an mutation [ EB/OL ]. (2003- 07- 26) [ 2012-12-10 ]. ht- tp ://ieeexplore. ieee. org/Xplore/guesthome, jsp. 被引量:1
  • 5'Fang J, Zhao X J. A hybrid particle swarm optimization with adaptive local search [ J ]. Journal of Networks, 2010,5(4) :411-418. 被引量:1
  • 6Sarafrazi S, Nezamabadi-pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm[J]. Seientia Iranica, 2011,18 ( 3 ) :539-548. 被引量:1
  • 7Soleimanpour-moghadam M, Nezamabadi-pour H. An im- proved quantum behaved gravitational search algorithm [EB/OL]. (2012-05-17) [2012-12-13]. bttp:ffieeex- plore, ieee. org/Xplore/guesthome, jsp. 被引量:1
  • 8Seyedali Mirjalili, Siti Zaiton Mohd Hashim. A new hybrid PSOGSA algorithm for function optimization [ EB/OL]. ( 2010-12-05 ) [ 2012-12-13]. http ://iecexplorc. icee. org/ Xplore/guesthome. jsp. 被引量:1
  • 9徐遥,安亚静,王士同.基于三角范数的引力搜索算法分析[J].计算机科学,2011,38(11):225-230. 被引量:7
  • 10王晓慧,刘雪英,白梅花.引入高斯变异和最速下降算子的人口迁移算法[J].计算机工程与应用,2009,45(20):57-60. 被引量:10

二级参考文献38

共引文献92

同被引文献34

  • 1王锡淮,郑晓鸣,肖健梅.求解约束优化问题的人工鱼群算法[J].计算机工程与应用,2007,43(3):40-42. 被引量:23
  • 2江铭炎,袁东风.全局版的人工鱼群算法[M].北京:科学出版社,2011:110-115. 被引量:1
  • 3RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA : a gravitational search algoritm [J]. Information Sci- ences, 2009, 179 (13) :2232-2248. 被引量:1
  • 4SARAFRAZI S, NEZAMABADI-POUR H, SARYAZDI S. Disruption : a new operator in gravitational search algorithm [J]. Scientia Iranica D, 2011, 18 (3) :539-548. 被引量:1
  • 5KAZAK N, DUYSAK A. Modified gravitational search algo- rithm[ C]// Innovations in Intelligent Systems and Appli- cations, International Symposium on. Turkey : IEEE ,2012 : 1589-1597. 被引量:1
  • 6MIRJALILI S, HASHIM S Z M. A New Hybrid PSOGSA Algorithm for Function Optimization [ C ]// Computer and In- formation Application (ICCIA), 2010 International Con- ference on. Tianjin : IEEE ,2010:374-377. 被引量:1
  • 7ZAHIRI S H. Fuzzy gravitational search algorithm an ap- proch for data mining [ J ]. Iranian Journal of Fuzzy Sys- tems,2012,9( 1 ) ,21-37. 被引量:1
  • 8SOLEIMANPOUR-MOGHADAM M, NEZAMABADI- POUR H. An improved quantum behaved gravitational search algorithm [ C ]// Electrical Engineering ( ICEE), 2012 20th Iranian Conference on. Tehran: IEEE,2012: 711-714. 被引量:1
  • 9刘耀年,范为,韩立国.基于改进AFSA算法的电力系统无功优化[J].继电器,2008,36(8):26-30. 被引量:1
  • 10王联国,施秋红,洪毅.PSO和AFSA混合优化算法[J].计算机工程,2010,36(5):176-178. 被引量:13

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部