期刊文献+

基于分数阶微分的模糊交通视频图像增强 被引量:17

Enhancement of fuzzy traffic video images based on fractional differential
下载PDF
导出
摘要 研究了一种基于分数阶微分理论的图像增强算法来提高恶劣天气及复杂场景情况下模糊交通视频图像的清晰度。研究了分数阶微积分Tiansi算子模板的特性,将现有的分数阶微分模板中被忽略的像素点应用到新的分数阶微分处理之中改进和更新了分数阶微分算子。对改进后的算子与近期常用的和公认的5种图像增强算法进行了比较分析,结果显示:改进的分数阶微分算子能够显著增强局部细节信息(如纹理等),而且图像中的噪声不明显。与Tiansi算子相比,新算子在处理彩色图像时,分数阶阶数的增高并不明显地增加图像噪声,而且锐化结果好,颜色更真;处理灰度图像时,在高频信息较多的情况下,增加模板中心像素权值可以抑制图像中的噪声。对试验及算法的分析比较证明:研究的新算法对增强模糊交通视频图像清晰度具有较好的效果,且处理速度也能满足实际应用的要求。 A new image enhancement algorithm based on fractional differential was proposed to improve the lower visibility of traffic video images in bad weather or complicated situations. The characteristics of fractional differential operator fractional order differential temp improve and update the fractiona (Tiansi) were researched and some points to be ignore in the existing ate were applied to the new fractional order differential treatment to differential operator. The improved operator was compared with the Tiansi operator and 5 kinds of common image enhancement algorithms. The comparing results show that the proposed algorithm can enhance the details of an image with less noise. When a color image is processed, the improved Tiansi operator can maintain the image colors well , sharpen the grey level images with high frequency signals and do not increase the noise more. When a gray image is pro- cessed, the noise can be suppressed by increasing the pixel weight in the template center with much high frequency information. The different fuzzy traffic video images under various situations are tested. The testing results show that the studied under bad weather, and the processing speed applications algorithm is suitable for the vague traffic video images of the algorithm can meet the requirements of the real
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第3期779-786,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60873186) 交通运输部科技基金资助项目(No.2012-364-223-500)
关键词 交通视频图像 图像增强 分数阶微分 Tiansi模板 traffic video image ; image enhancement ; fractional differential; Tiansi kernel
  • 相关文献

参考文献9

二级参考文献68

共引文献240

同被引文献166

引证文献17

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部