期刊文献+

高温高压下岩石热扩散系数的测量:以玄武岩为例 被引量:5

Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure:Application to Basalt
原文传递
导出
摘要 高温高压下矿物和岩石的热传导性质是了解地球内部动力学机制、层圈温度分布和地球热演化历史的重要参数。高温高压下原位测量矿物和岩石的热扩散系数具有重要的地学意义,但是在国内这方面的研究还处于空白阶段。以YJ-3000t紧装式六面顶压机为平台,搭建了高温高压下原位测量岩石热扩散系数的装置,并分别在0.5和2.0GPa、20~500℃条件下测量了玄武岩的热扩散系数。外推至常压高温下的结果与常压高温下采用LFA427激光热导仪测量的结果符合得较好,说明该装置可以用于测量高温高压下岩石的热扩散系数。 Heat conduction property of minerals and rocks at high temperature and high pressure is im-portant information to understand the dynamic mechanism, temperature distribution and the thermal evolution history of the Earth. Measurements of the thermal diffusivity of minerals and rocks at high temperature and high pressure have important significance in earth science. However,the domestic re- search in this field has not started. A device for measurement of thermal diffusivity at high temperature and high pressure has been developed using an YJ-3000t multi-anvil press. The thermal diffusivity of basalt is determined at O. 5 GPa,2.0 GPa and 20-500 ℃. The extrapolations of experimental results on basalt to atmospheric pressure are in good agreement with results from LFA427 laser-flash apparatus. It shows that the present setup can be used to measure the thermal diffusivity of rocks at high temper-ature and high pressure.
出处 《高压物理学报》 CAS CSCD 北大核心 2014年第1期11-17,共7页 Chinese Journal of High Pressure Physics
基金 中国科学院"135"项目
关键词 高温高压 热扩散系数测量装置 瞬态平面热源法 激光导热仪 玄武岩 high pressure and high temperature ~ thermal diffusivity measurement device transient planesource method laser-flash apparatus basalt
  • 相关文献

参考文献26

  • 1Birch F ,Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition[J]. AmJ Sci,1940,238(8) :529-558. 被引量:1
  • 2Hughes D S, Sawin F. Thermal conductivity of dielectric solids at high pressure[J]. Phys Rev, 1967, 161( 3) : 861- 863. 被引量:1
  • 3Fujisawa H, Fujii N, Mizutani H, et al. Thermal diffusivity of Mg, SiO, .Fe, SiO, and NaCI at high pressures and temperatures[J].J Geophys Res, 1968,73 (14) : 4727-4733. 被引量:1
  • 4Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3D con?vection[J]. Earth Planet Sci Lett, 1999,171 (3) :401-409. 被引量:1
  • 5Yanagawa T K B, Nakada M, Yuen D A. Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity[J]. Earth Planets Space, 2005,57 (1) : 15-28. 被引量:1
  • 6Chapman D S. Thermal gradients in the continental crust[J]. Geol Soc Spec Publ, 1986 ,24(1) : 63-70. 被引量:1
  • 7Artemieva I Mv Mooney W D. Thermal thickness and evolution of Precambrian lithosphere: A global study[J].J Geophys Res, 2001, 106(B8) : 16387-16414. 被引量:1
  • 8Marton F C,Shankland TJ ,Rubie D Cvet al. Effects of variable thermal conductivity on the mineralogy of subduc?ting slabs and implications for mechanisms of deep earthquakes[J]. Phys Earth Planet Inter, 2005,149 (1/2): 53- 64. 被引量:1
  • 9van den Berg A P, Yuen D A. Delayed cooling of the Earth's mantle due to variable thermal conductivity and the formation of a low conductivity zone[J]. Earth Planet Sci Lett, 2002,199(3/4) : 403-413. 被引量:1
  • 10Stacey F Dv l.oper DE. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance[J]. Phys Earth Planet Inter, 2007 ,161 (1/2) : 13-18. 被引量:1

同被引文献57

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部